Период математики постоянных величин

Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

Подобные документы

  • Сущность и методологические проблемы математической физики. Особенности математического моделирования жёсткости прокатного калиброванного валка. Основные положения и свойства идеальной математики. Порядок устройства и структурные элементы идеальных чисел.

    доклад, добавлен 10.10.2010

  • Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.

    презентация, добавлен 21.05.2012

  • Ознакомление с жизнью и научной деятельностью древнегреческих ученых Фалеса Милетского, Пифагора, Демокрита и Аристотеля. Рассмотрение вклада в развитие математики Аристотеля и Аполлония Пергского. Научные достижения математика Андрея Петровича Киселева.

    презентация, добавлен 21.11.2011

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат, добавлен 23.01.2011

  • Она прожила короткую, но яркую жизнь. Много ей довелось пережить: научную славу и литературное признание, сомнение и неуверенность, недовольство собой и одиночество. Литературное наследие.

    творческая работа, добавлен 18.06.2007

  • Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.

    реферат, добавлен 13.01.2011

  • Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.

    презентация, добавлен 19.07.2015

  • Математические модели технических объектов и методы для их реализации. Анализ электрических процессов в цепи второго порядка с использованием систем компьютерной математики MathCAD и Scilab. Математические модели и моделирование технического объекта.

    курсовая работа, добавлен 08.03.2016

  • Использование формул объема прямоугольного параллелепипеда и площади прямоугольника при расчете расходных материалов для изготовления различных упаковок. Осуществление связей математики с окружающим миром в целях улучшения экономичности упаковки чая.

    научная работа, добавлен 11.01.2010

  • Учебное пособие "Высшая математика для менеджеров" включает разделы высшей математики, изучение которых применяется для решения прикладных экономических и управленческих задач - это аналитическая геометрия, линейная алгебра и математический анализ.

    дипломная работа, добавлен 24.04.2009

  • Задача о ханойской башне. Задача о разрезании пиццы. Задача Иосифа Флавия. Дискретная математика. Теория возвратных последовательностей - особая глава математики. Исчисление конечных разностей. Последовательности.

    дипломная работа, добавлен 08.08.2007

  • Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.

    презентация, добавлен 01.11.2013

  • Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.

    курсовая работа, добавлен 15.06.2015

  • Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.

    курсовая работа, добавлен 24.05.2009

  • Теория приближений как раздел математики, изучающий вопрос о возможности приближенного представления математических объектов. Построение интерполяционного многочлена. Приближение кусочно-полиномиальными функциями. Алгоритм программы и ее реализация.

    курсовая работа, добавлен 18.10.2015

  • Проведение исследования на уроках обобщающего повторения курса математики в контексте ведущего понятия "порядковая структура". Примеры алгебраических и геометрических бинарных отношений. Включение учащихся в исследовательскую и проектную деятельность.

    курсовая работа, добавлен 01.12.2014

  • Статистика – наука, що збирає, обробляє і вивчає дані, пов’язані з масовими явищами, процесами і подіями. Математична статистика – розділ математики, присвячений методам систематизації, обробки й використання даних для наукових і практичних висновків.

    курсовая работа, добавлен 04.06.2008

  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа, добавлен 13.12.2011

  • Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.

    реферат, добавлен 12.03.2011

  • Перестройка структуры и содержания учебного курса математики в процессе проведения реформ математического образования. Определения косинуса, синуса и тангенса острого угла. Основные тригонометрические формулы. Понятие и основные свойства векторов.

    дипломная работа, добавлен 11.01.2011

  • Розподіли системи двох випадкових величин, що однозначно визначається сумісним розподілом ймовірностей, який можна задати матрицею. Інтегральна функція розподілу випадкового вектора. Середньоквадратична регресія. Лінійна кореляція нормальних величин.

    реферат, добавлен 13.06.2010

  • Лекция по предмету "математика" в военном училище. Исторические сведения и построение курса математики для военных. Описание построения прямоугольной системы координат. Полярные координаты и их связь с прямоугольными.

    лекция, добавлен 02.06.2008

  • Краткая биографическая справка из жизни Пьера Ферма. Общее понятие про правильные многоугольники. Числа математика, их история. Великая теорема Ферма, случаи доказательства. Особенности облегченной и малой теоремы. Роль математики в деятельности Уайлсома.

    контрольная работа, добавлен 14.06.2012

  • Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.

    курс лекций, добавлен 30.04.2010

  • Пифагор как основоположник математики и родоначальник многих мистических учений, учредитель религиозно-этического братства и создатель научно-философской школы, ставшей союзом Истины, Добра и Красоты. Краткая биография ученого и главные его достижения.

    презентация, добавлен 19.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.