Виды дифференциальных уравнений первого порядка и методы их решения

Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.

Подобные документы

  • Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.

    контрольная работа, добавлен 13.06.2012

  • Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.

    контрольная работа, добавлен 16.03.2010

  • Теория инвариантов уравнения линии второго порядка от трех переменных, определение канонического уравнения. Общий пример решения задачи на определение вида и расположения поверхности, заданной относительно декартовой прямоугольной системы координат.

    курсовая работа, добавлен 02.06.2013

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа, добавлен 07.09.2010

  • Линейные уравнения с параметрами. Методы и способы решения систем с неизвестным параметром (подстановка, метод сложения уравнений и графический). Выявление алгоритма действий. Поиск значения параметров, при которых выражение определяет корень уравнения.

    контрольная работа, добавлен 17.02.2014

  • Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.

    курсовая работа, добавлен 03.11.2011

  • Историческая справка о возникновении и развитии теории неопределенных уравнений. Числовые сравнения и их свойства, а также линейные сравнения с одним неизвестным и методы их решения. Методы решения линейных диофантовых уравнений с двумя неизвестными.

    курсовая работа, добавлен 01.07.2013

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие, добавлен 23.04.2009

  • Механическая интерпретация нормальной системы дифференциальных уравнений первого порядка. Свойства решений автономных систем. Предельное поведение траекторий, циклы. Функция последования и направления их исследования, оценка характерных параметров.

    курсовая работа, добавлен 24.09.2013

  • Формулировка основного закона динамики. Понятие и основные характеристики прямолинейного движения, формы и особенности его задания. Схема формирования и решения дифференциальных уравнений движения. Примеры решения типовых задач по данной тематике.

    презентация, добавлен 26.09.2013

  • Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.

    задача, добавлен 20.02.2011

  • Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.

    контрольная работа, добавлен 28.02.2011

  • Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.

    курсовая работа, добавлен 21.12.2009

  • Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

    лабораторная работа, добавлен 15.07.2009

  • Разложение многочлена на множители. Область допустимых значений уравнения как множество всех действительных чисел. Утверждения, полезные при решении уравнений. Примеры упражнений, связанных с понятием обратной функции, нестандартные методы решения.

    контрольная работа, добавлен 22.12.2011

  • Представления линейных дифференциальных уравнений как средств математического решения практических задач в естествознании. Простейшая модель однородных популяций на примере определения роста численности карасей. Отлов с постоянной и относительной квотой.

    курсовая работа, добавлен 11.07.2011

  • Теоретические основы решения уравнений, содержащих параметр. Анализ школьных учебников по алгебре и началам анализа. Основные виды уравнений, содержащих параметр. Основные методы решения уравнений, содержащих параметр.

    дипломная работа, добавлен 08.08.2007

  • Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.

    контрольная работа, добавлен 25.11.2013

  • Теория решения диофантовых уравнений. Однородные уравнения. Общие линейные уравнения. Единственности разложения натурального числа на простые множители. Решение каждой конкретной задачи в целых числах с помощью разных методов. Основные неизвестные х и у.

    материалы конференции, добавлен 13.03.2009

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.

    курсовая работа, добавлен 27.04.2011

  • Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.

    курсовая работа, добавлен 14.09.2010

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа, добавлен 06.05.2010

  • Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.

    реферат, добавлен 10.11.2009

  • Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.

    лабораторная работа, добавлен 14.08.2010

  • Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.

    дипломная работа, добавлен 25.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.