Фракталы - новая ветвь математики
История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.
Подобные документы
Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.
дипломная работа, добавлен 29.01.2010Геометрия Евклида как первая естественнонаучная теория. Структура современной математики. Основные черты математического мышления. Аксиоматический метод. Принципы аксиоматического построения научных теорий. Математические доказательства.
реферат, добавлен 10.05.2011Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Изучение исторического развития математики в Российской Империи в период 18-19 веков как науки о количественных отношениях и пространственных формах действительного мира. Анализ уровня математического образования и его развитие российскими учеными.
реферат, добавлен 26.01.2012Основные понятия теории течения жидкости. Создание математической модели распределения температурного поля в вязкой жидкости. Разработка цифровой модели изменения поля температуры в зависимости от: теплопроводности жидкости и металла, граничных условий.
дипломная работа, добавлен 03.07.2014Открытие Пифагора в области теории музыки. Что определяет консонанс. Законы пифагорейской музыки. Математическое описание построения музыкальной гаммы. Музыкальный строй. Номер ступени верхнего тона. Интервальные коэффициенты. Приемы дирижирования.
научная работа, добавлен 09.02.2009Основной вопрос теории сингулярных интегралов. Понятие сингулярного интеграла. Представление функции сингулярным интегралом в заданной точке. Приложения в теории рядов Фурье. Сингулярный интеграл Пуассона.
дипломная работа, добавлен 08.08.2007Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа, добавлен 12.09.2009Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа, добавлен 04.02.2012История возникновения и развития математической логики как раздела математики, изучающего математические обозначения и формальные системы. Применение математической логики в технике и криптографии. Взаимосвязь программирования и математической логики.
контрольная работа, добавлен 10.10.2014Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.
курсовая работа, добавлен 22.04.2014Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.
курсовая работа, добавлен 07.02.2016Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.
курсовая работа, добавлен 22.11.2011Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.
курсовая работа, добавлен 15.06.2011Принципы решения задач по основным разделам теории вероятностей: случайные события и их допустимость, непроизвольные величины, распределения и числовые характеристики градировки, основные предельные теоремы для сумм независимых вероятностных величин.
контрольная работа, добавлен 03.12.2010Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.
контрольная работа, добавлен 04.09.2010- 92. Применение статистических методов для анализа эффективности экономических показателей предприятия
Построение многофакторной корреляционно-регрессионной модели доходности предприятия: оценка параметров функции регрессии, анализ факторов на управляемость, экономическая интерпретация модели. Прогнозирование доходности на основе временных рядов.
дипломная работа, добавлен 28.06.2011 Начала математической теории. Арифметика узлов, их классификация. Свойства неальтернированных узлов; преобразование Рейдемейстера. Арифметические операции с математическими узлами. Разложение составного узла. Алгоритм полного перебора с заполнением.
презентация, добавлен 13.04.2016Понятие и сущность факториала, его обозначение и применение в математических исчислениях. Основные свойства факториалов, история создания и способы представления формулы Стирлинга-Муавра. Научная деятельность Джеймса Стирлинга и Абрахама де Муавра.
презентация, добавлен 23.06.2013Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат, добавлен 13.01.2011История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.
презентация, добавлен 21.10.2011Расчет наступления определенного события с использованием положений теории вероятности. Определение функции распределения дискретной случайной величины, среднеквадратичного отклонения. Нахождение эмпирической функции и построение полигона по выборке.
контрольная работа, добавлен 14.11.2010Изучение вопросов применения теории множеств, их отношений и свойств и теории графов, а также математических методов конечно-разностных аппроксимаций для описания конструкций РЭА (радиоэлектронной аппаратуры) и моделирования протекающих в них процессов.
реферат, добавлен 26.09.2010Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа, добавлен 01.05.2010Евдокс Книдский как математик и астроном. Разработка им так называемого "метода исчерпывания" как основ теории пределов и базы для развития математического анализа. Сведения о Пифагоре, его роль как ученого и политического деятеля, величие Архимеда.
реферат, добавлен 28.05.2010