Текстовые задачи

Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

Подобные документы

  • Понятие о многокритериальной оптимизации. Линейное и математическое программирование, дающие численные решения многомерных задач с ограничениями. Решение задачи на ранжирование для определения оптимального объекта, исходя из определяющих его параметров.

    реферат, добавлен 31.05.2014

  • Сущность понятия "дифференциальное уравнение". Главные этапы математического моделирования. Задачи, приводящие к решению дифференциальных уравнений. Решение задач поиска. Точность маятниковых часов. Решение задачи на определение закона движения шара.

    курсовая работа, добавлен 06.12.2013

  • Составление оптимального плана посева зерновых культур по участкам. Отображение изменения решения, если весь второй участок засеять пшеницей, ячменем или кукурузой с нижним уровнем затрат. Расчет прибыли от продажи урожая, возможности ее максимизации.

    курсовая работа, добавлен 05.01.2015

  • Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.

    курсовая работа, добавлен 11.02.2014

  • История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат, добавлен 07.09.2009

  • Игры, повторяемые многократно, их отличительные свойства и этапы. Смешанные стратегии, условия и возможности их использования на практике. Аналитический метод решения игры типа 2 x 2. Основные теоремы для прямоугольных игр. Алгебраические решения.

    презентация, добавлен 23.10.2013

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа, добавлен 23.08.2015

  • Априорный выбор числа итераций в методе простых с попеременно чередующимся шагом. Доказательство сходимости процесса в исходной норме гильбертова пространства. Оценка погрешности и решение неравенств. Случай неединственного решения с попеременной.

    дипломная работа, добавлен 17.02.2012

  • Понятие плоскостей, их классификация и разновидности, способы и принципы задания. Сущность и этапы решения позиционных задач. Исследование принадлежности прямой заданной плоскости, методика и цели доказательства их параллельности и перпендикулярности.

    презентация, добавлен 27.10.2013

  • Вычисление скалярного и векторного произведений векторов, заданных в прямоугольной декартовой системе координат. Расчет длины ребра пирамиды по координатам ее вершин. Поиск координат симметричной точки. Определение типа линии, описываемой уравнением.

    контрольная работа, добавлен 12.05.2016

  • Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.

    контрольная работа, добавлен 12.12.2009

  • Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.

    контрольная работа, добавлен 11.03.2011

  • Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа, добавлен 12.06.2010

  • Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.

    презентация, добавлен 17.09.2013

  • Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практическое применение к задаче. Разбиение множества маршрутов на подмножества и его графическое представление.

    задача, добавлен 24.07.2009

  • Понятие волнового уравнения, описывающего различные виды колебаний. Рассмотрение явной разностной схемы "крест" для решения данной задачи. Нахождение решений на нулевом и первом слоях с помощью начальных условий. Виды и решения интегральных уравнений.

    презентация, добавлен 18.04.2013

  • Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.

    курсовая работа, добавлен 30.04.2011

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие, добавлен 07.01.2012

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа, добавлен 13.04.2010

  • Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.

    контрольная работа, добавлен 14.12.2012

  • Теоретические основы решения уравнений, содержащих параметр. Анализ школьных учебников по алгебре и началам анализа. Основные виды уравнений, содержащих параметр. Основные методы решения уравнений, содержащих параметр.

    дипломная работа, добавлен 08.08.2007

  • Формула для начала счета методом прогонки С.К. Годунова. Метод дополнительных краевых условий. Второй вариант метода переноса краевых условий в произвольную точку интервала интегрирования. Метод переноса в произвольную точку интервала интегрирования.

    методичка, добавлен 13.07.2010

  • Рассмотрение понятия и сущности линеаризации. Изучение способов линейной аппроксимации функции преобразования средств измерений. Поиск погрешностей линеаризации; сопоставление полученных результатов для каждого метода на примере решения данных задач.

    контрольная работа, добавлен 03.04.2014

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

  • Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа, добавлен 11.12.2002

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.