Метрические характеристики графа
Понятие "граф" и его матричное представление. Свойства матриц смежности и инцидентности. Свойства маршрутов, цепей и циклов. Задача нахождения центральных вершин графа, его метрические характеристики. Приложение теории графов в областях науки и техники.
Подобные документы
Понятие "граф". Отношения между разнородными элементами. Матричное представление графов. Операции над графами. Маршруты, цепи, циклы. Метрические характеристики графа. Приложение теории графов в различных областях науки и техники. Листинг программы.
курсовая работа, добавлен 15.12.2008История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа, добавлен 20.12.2015Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.
курсовая работа, добавлен 14.05.2012Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа, добавлен 09.01.2009Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа, добавлен 30.09.2014Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.
контрольная работа, добавлен 17.05.2015Общее понятие, основные свойства и закономерности графов. Задача о Кенигсбергских мостах. Свойства отношения достижимости в графах. Связность и компонента связности графов. Соотношение между количеством вершин связного плоского графа, формула Эйлера.
презентация, добавлен 16.01.2015Понятие и внутренняя структура графа, его применение и матричное представление (матрица инциденций, разрезов, цикломатическая, Кирхгофа). Специальные свойства и признаки графов, решение оптимизационных задач. Венгерский алгоритм, матричная интерпретация.
курсовая работа, добавлен 24.12.2013- 9. Графы
Математическое описание системы автоматического управления с помощью графов. Составление графа и его преобразование, избавление от дифференциалов. Оптимизации ориентированных и неориентированных графов, составления матриц смежности и инцидентности.
лабораторная работа, добавлен 11.03.2012 Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.
курсовая работа, добавлен 30.01.2012Задача о кенигсбергских мостах, четырех красках, выходе из лабиринта. Матрица инцидентности для неориентированного и (ориентированного) графа. Степень вершины графа. Ориентированное дерево. Линейные диаграммы или графики Ганта. Метод критического пути.
презентация, добавлен 23.06.2013- 12. Матрицы графов
Теоретико-множественная и геометрическая форма определения графов. Матрица смежностей вершин неориентированного и ориентированного графа. Элементы матрицы и их сумма. Свойства матрицы инцидентности и зависимость между ними. Подмножество столбцов.
реферат, добавлен 23.11.2008 Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.
лабораторная работа, добавлен 29.04.2011Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат, добавлен 13.06.2011- 15. Спектр графа
Спектральная теория графов. Теоремы теории матриц и их применение к исследованию спектров графов. Определение и спектр предфрактального фрактального графов с затравкой регулярной степени. Связи между спектральными и структурными свойствами графов.
дипломная работа, добавлен 05.06.2014 Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.
курсовая работа, добавлен 10.10.2011Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат, добавлен 11.11.2008- 18. Графы
Граф как совокупность объектов со связями между ними. Характеристики ориентированного и смешанного графов. Алгоритм поиска кратчайшего пути между вершинами, алгоритм дейкстры. Алгебраическое построение матрицы смежности, фундаментальных резервов и циклов.
методичка, добавлен 07.06.2009 Проверка справедливости тождеств или включений с использованием алгебры множеств и диаграмм Эйлера-Венна. Изображение графа и матрицы отношения, обладающего свойствами рефлексивности, транзитивности и антисиммеричности. Изучение неориентированного графа.
контрольная работа, добавлен 05.05.2013- 20. Графы
Сущность теории графов и ее применение на современном этапе в различных отраслях науки и техники, особенно в экономике и социологии. Понятие дерева, его разновидности, характерные свойства. Операции, совершаемые над графами и возможности их реализации.
контрольная работа, добавлен 08.12.2009 Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
курсовая работа, добавлен 18.01.2013Основные понятия и свойства эйлеровых и гамильтоновых цепей и циклов в теории графов. Изучение алгоритма Дейкстры и Флойда для нахождения кратчайших путей в графе. Оценки для числа ребер с компонентами связанности. Головоломка "Кенигзберзьких мостов".
курсовая работа, добавлен 08.10.2014Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация, добавлен 19.11.2013- 24. Теория графов
Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.
дипломная работа, добавлен 19.07.2011 Разработка логико-формальной модели описания методики изготовления винных изделий. Разделение ингредиентов и продукции на множества. Исследование на рефлексивность, транзитивность, симметричность. Построение графа, матрицы смежности и инцидентности.
контрольная работа, добавлен 07.06.2010