Математические модели физико-химических процессов
Соотношение между удельным весом и плотностью. Кинематическая и динамическая вязкость жидкостей и газов; уравнение Бернулли для идеальной и реальной жидкостей. Порядок расчета сопротивления слоя зернистого материала. Методы очистки газов от пыли.
Подобные документы
Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа, добавлен 17.06.2015Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.
курсовая работа, добавлен 11.12.2013Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.
курсовая работа, добавлен 23.12.2010Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.
контрольная работа, добавлен 29.04.2012В каждой из двух урн содержится 6 черных и 4 белых шаров. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
контрольная работа, добавлен 19.05.2003Изучение вопросов применения теории множеств, их отношений и свойств и теории графов, а также математических методов конечно-разностных аппроксимаций для описания конструкций РЭА (радиоэлектронной аппаратуры) и моделирования протекающих в них процессов.
реферат, добавлен 26.09.2010Адсорбция при конвективного-диффузионном переносе веществ в пористой среде. Перенос вещества в пористой среде, насыщенной неподвижной и подвижной жидкостью. Решение гидродинамических задач фильтрации неоднородных жидкостей с учетом диффузии и адсорбции.
диссертация, добавлен 19.06.2015Алгоритм проведения регрессионного анализа для создания адекватной модели, прогнозирующей цены на бензин на будущий период. Основы разработки программного обеспечения, позволяющего автоматизировать исследования операций в заданной предметной области.
контрольная работа, добавлен 06.02.2013Понятие об основной тенденции ряда динамики, ее сущность и визуальное представление, методы анализа. Аналитическая оценка уравнения тренда. Характеристика, использование различных методов для выделения тренда временных рядов, прогнозирование показателей.
курсовая работа, добавлен 04.03.2013Выбор основного алгоритма решения задачи. Требования к функциональным характеристикам программы. Минимальные требования к составу и параметрам технических средств и к информационной и программной совместимости. Логические модели, блок-схемы алгоритмов.
курсовая работа, добавлен 16.11.2010Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат, добавлен 18.02.2014Понятие кватернионов: свойства, замена матрицами, геометрическая и тригонометрическая интерпретации. Изучение обтекания кругового цилиндра в идеальной жидкости, создание программы для визуализации задачи, ее решение в комплексной форме в квартернионах.
курсовая работа, добавлен 28.06.2013Моделирование входного заданного сигнала, построение графика, амплитудного и фазового спектра. Моделирование шума с законом распределения вероятностей Рэлея, оценка дисперсии отсчетов шума и проверка адекватности модели шума по критерию Пирсона.
курсовая работа, добавлен 25.11.2011Возникновение и развитие теории вероятностей и ее приложений. Решение классических парадоксов игры в кости и "азартных игр". Парадокс закона больших чисел Бернулли и Бертрана, дня рождения и раздачи подарков. Изучение парадоксов из книги Г. Секея.
контрольная работа, добавлен 29.05.2016Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.
методичка, добавлен 30.04.2014Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.
курс лекций, добавлен 02.03.2010Схема блоков модели Карааслана, система дифференциальных уравнений, методы решения. Блоки и биохимические законы системы Солодянникова, переход между фазами. Моделирование патологий, графики экспериментов. Построение комплексной модели гемодинамики.
дипломная работа, добавлен 24.09.2012- 68. Линейная алгебра
Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.
контрольная работа, добавлен 11.12.2012 Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.
лекция, добавлен 17.12.2010Нахождение длины ребер, углов между ними, площадей граней и объема пирамиды по координатам вершин пирамиды. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера, средствами матричного исчисления. Уравнение кривой второго порядка.
контрольная работа, добавлен 01.05.2012Вероятность выхода прибора за время t в нормальном режиме равна 0,1, в ненормальном 0,7. Семена некоторых растений прорастают с вероятностью 0,8. Найти вероятность того, что из 2000 посаженных семян прорастает 1600 семян; не менее 1600 семян.
контрольная работа, добавлен 19.05.2003Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа, добавлен 31.05.2010Исследование понятия "форма" в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.
реферат, добавлен 20.08.2009Теорема Бернулли на примере моделирования электросхемы. Моделирование случайной величины, имеющей закон распределения модуля случайной величины, распределенной по нормальному закону. Проверка критерием Х2: имеет ли данный массив закон распределения.
курсовая работа, добавлен 31.05.2010Данный электронный учебник по математике предназначен для изучения темы "Использование неравенств при решении олимпиадных задач". Постановка и реализация задачи. Теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли.
научная работа, добавлен 12.12.2009