Раскладанне мнагачлена на множнікі

Характарыстыка тоеснага пераўтварэнні, у выніку якога мнагачлена пераўтворыцца ў твор некалькіх сомножителей. Разгляд асноўных спосабаў раскладання мнагачлена на множнікі: вынясенне агульнага множніка, формулы скарочанага множання, спосаб групоўкі.

Подобные документы

  • Дифференциальное уравнение Бесселя и его интегралы. Рекуррентные формулы для данных функций. Применение теоремы Коши к интегралу Пуассона. Некоторые применения функций Бесселя. Задача на тепловое равновесие. Дифференциальное уравнение второго порядка.

    курсовая работа, добавлен 06.06.2013

  • Вычисление градиента, дивергенции и ротора однократным дифференцированием функций. Дифференциальные операций и операторы второго порядка. Выполнение условий дифференцируемости и непрерывности. Оператор Лапласа, градиент дивергенции, формулы Грина.

    реферат, добавлен 21.03.2014

  • Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат, добавлен 18.12.2012

  • Предмет и методы изучения дифференциальной векторно-матричной алгебры, ее структура. Векторное решение однородных и неоднородных дифференциальных уравнений. Численное решение векторно-матричных уравнений. Формулы построения вычислительных процедур.

    реферат, добавлен 15.08.2009

  • Метод сеток (конечных разностей) - вид численного анализа. Расчет стержней и пластин на прочность, устойчивость и колебания. Формулы для приближенного вычисления производных от функций переменных, расчет упругих систем и разномерных краевых задач.

    учебное пособие, добавлен 30.12.2011

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа, добавлен 11.03.2013

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа, добавлен 09.12.2008

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа, добавлен 05.01.2011

  • Логарифмическая функция, ее основные свойства и график. Простейшие логарифмические уравнения. Логарифмо-показательные уравнения. Переход к логарифмам одного основания с использованием формулы перехода от логарифма одного основания к логарифму другого.

    курсовая работа, добавлен 26.11.2013

  • Методы вычислительной математики, работа с приближёнными величинами. Понятие абсолютной, предельной абсолютной и относительной погрешности приближённого числа. Выведение формулы предельной абсолютной и относительной погрешностей для заданной функции.

    контрольная работа, добавлен 05.09.2010

  • Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа, добавлен 23.02.2011

  • Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка, добавлен 21.08.2009

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа, добавлен 07.09.2010

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа, добавлен 21.11.2014

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа, добавлен 07.09.2010

  • Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.

    реферат, добавлен 18.01.2011

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа, добавлен 14.10.2013

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция, добавлен 14.12.2010

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа, добавлен 07.09.2010

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация, добавлен 15.01.2014

  • Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.

    методичка, добавлен 25.12.2010

  • Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.

    реферат, добавлен 19.11.2010

  • Определение формулы исчисления высказываний, основные цели математической логики. Построение формул алгебры высказываний. Равносильность формул исчисления высказываний, конъюнктивная и дизъюнктивная нормальная форма. Постановка проблемы разрешимости.

    контрольная работа, добавлен 12.08.2010

  • Бесселевы функции с любым индексом. Формулы приведения для бесселевых функций. Интегральное представление бесселевых функций с целым индексом. Ряды Фурье-Бесселя. Асимптотическое представление бесселевых функций для больших значений аргумента.

    курсовая работа, добавлен 22.09.2008

  • Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.

    реферат, добавлен 11.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.