Оптимальное управление линейными динамическими объектами
Управляемые линейные динамические объекты (ЛДО). Оптимальное управление ЛДО с фиксированным временем и терминальным критерием качества. Задача линейного предельного быстродействия. Линейная задача теории оптимального управления как проблема моментов.
Подобные документы
Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.
курсовая работа, добавлен 31.01.2014Линейные однородные дифференциальные уравнения второго порядка, общий вид. Линейная зависимость векторов и функций. Определитель Вронского, практические примеры его нахождения. Неоднородные уравнения второго порядка, теорема и доказательство, решение.
презентация, добавлен 17.09.2013Понятие и характеристика линейного пространства, его главные свойства и особенности. Исследование аксиом векторного пространства. Анализ отличий и признаков векторного подпространства. Базис и формулы линейного пространств, определение его размерности.
реферат, добавлен 21.01.2011Определение матрицы, решение систем уравнений методом Гаусса и по формулам Крамера. Определение параметров треугольника, его графическое построение. Задача приведения уравнения кривой второго порядка к каноническому виду и ее построение.
контрольная работа, добавлен 08.05.2009Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.
контрольная работа, добавлен 16.02.2012- 31. Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств
Обоснование выбора оптимального маршрута по критерию минимума времени на его прохождение. Словесная постановка маршрутной задачи. Математическая постановка задачи. Оптимизация маршрута с города Рязановский до города Королева. Оценка его вариантов выбора.
курсовая работа, добавлен 19.12.2009 Преобразования Э. Бореля и формулы Ю.В. Сохоцкого. Предложение 1 и критерий полноты С. Банаха. Предложение 2 и теорема Шаудера-Тихонова. Вопрос о полноте в полосе. Однородная симметричная задача Лидстона. Главная ветвь логарифма и функции Лидстона.
курсовая работа, добавлен 09.01.2012Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.
контрольная работа, добавлен 21.09.2009Поняття математичної та арифметичної задачі, ступені у навчанні розв’язування. Аналіз системи математичних задач, які вивчаються в початкових класах. Математична задача як засіб активізації учіння. Індивідуальний підхід до дитини і диференціація завдань.
курсовая работа, добавлен 25.12.2014- 35. Геометрия чисел
Основная задача геометрии чисел. Теорема Минковского. Доказательство теоремы Минковского. Решётки. Критические решётки. "Неоднородная задача". Герман Минковский (Minkowski) (1864 - 1909) - выдающийся математик, еврей, родом из России, профессор.
курсовая работа, добавлен 29.05.2006 Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.
методичка, добавлен 03.04.2011Теоретические основы, значение, особенности и методика применения различных способов решения нестандартных задач в развитии математического мышления младших школьников. Логические задачи как средство развития математического мышления младших школьников.
курсовая работа, добавлен 19.04.2010- 38. Задача Діріхле
Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.
курсовая работа, добавлен 11.06.2015 - 39. Изучение возможностей массивно-параллельных вычислений в применении к задачам математической физики
Задача о малых колебаниях. Вычисление коэффициентов с помощью быстрого преобразования Фурье. Дискретный подход к вычислению коэффициентов. Вычисление методом Лежандра-Гаусса. Расчет узлов и весовых коэффициентов. Массивно-параллельный расчёт амплитуд.
курсовая работа, добавлен 20.07.2015 Определение исследования операция как применения научного метода комплексными научными коллективами для решения задач, связанных с управлением организованными (человеко-машинными) системами с целью получения решений. Анализ отличительных особенностей ИСО.
реферат, добавлен 27.06.2011Понятие "задача" в начальном курсе математики и её решения в начальных классах. Различные подходы к обучению младших школьников решению текстовых задач. Методические приёмы обучения решению простых задач. Разработка фрагментов уроков по данной проблеме.
курсовая работа, добавлен 15.06.2010Предназначена библиотеки "simplex" для оптимизации линейных систем с использованием симплексного алгоритма. Построение экономико-математической модели формирования плана производства. Основные виды транспортных задач, пример и способы ее решения.
курсовая работа, добавлен 12.01.2011Задачи оптимального управления и ее разновидности. Вычислительные аспекты динамического программирования. Дифференциальное и интегральное исчисление в образах: функции, последовательности, ряды. Транспортная задача, модель-Леонтьева, задачи на повторение.
курсовая работа, добавлен 20.06.2012Общие сведения о фигурах, вычерчиваемых одним росчерком. Теория графов Эйлера, задача о мостах. Правила построения фигуры без отрыва карандаша от бумаги. Задача об эйлеровом пути, применение графов в жизни, быту, различных отраслях науки и техники.
реферат, добавлен 16.12.2011Составление оптимального плана посева зерновых культур по участкам. Отображение изменения решения, если весь второй участок засеять пшеницей, ячменем или кукурузой с нижним уровнем затрат. Расчет прибыли от продажи урожая, возможности ее максимизации.
курсовая работа, добавлен 05.01.2015- 46. Эйлеровы графы
Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.
курсовая работа, добавлен 23.12.2007 Ознакомление с содержанием и этапами реализации программы ТРИЗ как способа развития диалектического мышления и творческого воображения. Сравнительный анализ технологий теории решения изобретательных задач в исполнении Г.С. Альтшуллера и Р. Бартини.
контрольная работа, добавлен 10.07.2010Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.
контрольная работа, добавлен 23.04.2014Вирішення геометричних задач. Побудова сторони квадрата, площа якого рівна площі даного круга. Задача про подвоєння куба: побудування ребра куба, об’єм якого вдвічі більший, за об’єм даного. Задача про розділення довільного кута на три рівні частини.
контрольная работа, добавлен 18.12.2015Симплексный метод как универсальное решение задач линейного программирования. Применение метода Жордана-Гаусса для системы линейных уравнений в канонической форме. Опорное решение системы ограничений. Критерий оптимальности. Задача канонической формы.
презентация, добавлен 11.04.2013