Построение решений дифференциальных уравнений в виде степенных рядов
Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
Подобные документы
Применение метода дополнительного аргумента к решению характеристической системы. Доказательство существования решения задачи Коши. Постановка задачи численного расчёта. Дискретизация исходной задачи и её решение итерациями. Программа и её описание.
дипломная работа, добавлен 25.05.2014Задачи для обыкновенных дифференциальных уравнений. Квадратурные формулы. Теоретические основы метода сеток для решения задачи Коши. Погрешность аппроксимации, устойчивость, основная теорема метода сеток. Схема предиктор-корректор 2-го порядка.
реферат, добавлен 07.12.2013Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
лекция, добавлен 17.12.2010Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.
реферат, добавлен 11.12.2014Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа, добавлен 27.05.2008Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа, добавлен 09.02.2012Теорема Ролля и ее доказательство, структура и геометрический смысл. Сущность теоремы о среднем, принадлежащей Лагранжу, использование в ней результатов теоремы Ролля. Отражение и обобщение работы Лагранжа в теореме Коши, методика ее доказательства.
реферат, добавлен 15.08.2009Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа, добавлен 23.07.2012Уравнения параболического типа. Разностные схемы для уравнения теплопроводности, задача Коши. Явная и неявная разностные схемы. Применение двухслойных разностных шаблонов. Устойчивость двухслойных разностных схем. Решение задач методом прогонки.
лекция, добавлен 28.06.2009Теория определителей в трудах П. Лапласа, О. Коши и К. Якоби. Определители второго порядка и системы двух линейных уравнений с двумя неизвестными. Определители третьего порядка и свойства определителей. Решение системы уравнений по правилу Крамера.
презентация, добавлен 31.10.2016Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.
курсовая работа, добавлен 14.09.2010Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Рассмотрение особенностей сравнения рядов. Характеристика признаков сходимости Даламбера. Критерий Коши как ряд утверждений в математическом анализе. Анализ геометрической интерпретации интегрального признака. Способы определения сумы числового ряда.
контрольная работа, добавлен 01.03.2013Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа, добавлен 28.02.2011Исследование числовых рядов на сходимость. Область сходимости для разных степенных рядов. Разложение функции в ряд Тейлора. Нормы сеточной функции. Исследование устойчивости разностной схемы для однородного уравнения. Совокупность разностных уравнений.
курсовая работа, добавлен 19.04.2011- 43. Числовые ряды
Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.
курсовая работа, добавлен 01.10.2014 Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010Содержание понятия, исследование свойств и применение различных методов решения функциональных уравнений. Порядок решения функциональных уравнений Коши на множестве Q рациональных чисел, на оси R, полуоси R. Измеримые функции и гиперболические косинусы.
дипломная работа, добавлен 01.10.2011Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация, добавлен 18.04.2013- 47. Числовые ряды
Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка, добавлен 26.06.2010 Схематическое изображение и краткое описание заданной гидравлической системы, выражение работы данной системы с помощью уравнений. Написание уравнения системы виде входа-выхода, решение задачи в символьном виде. Разложение уравнения в ряд Тейлора.
лабораторная работа, добавлен 11.03.2012Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.
реферат, добавлен 28.06.2009Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.
контрольная работа, добавлен 16.03.2010