Решение систем линейных алгебраических уравнений методом простой итерации
Преобразование матрицы системы линейных алгебраических уравнений (СЛАУ) с помощью алгоритма Гаусса. Решение задачи методом простой итерации. Создание блок-схемы и текста программы для решения СЛАУ, реализованной на языке программирования Turbo Pascal.
Подобные документы
Сущность метода Гаусса при решении систем линейных уравнений. Элементарные преобразования этого метода. Краткое описание среды визуальной разработки Delphi. Описание основных применяемых процедур и алгоритм роботы программы по решению уравнений.
курсовая работа, добавлен 29.08.2010История развития алгоритмических языков. Создание языка С++. Разработка программы в Visual C++ для решения линейных уравнений методом Крамера. Структура данных, этапы тестирования программного обеспечения на работоспособность и корректность расчетов.
курсовая работа, добавлен 29.12.2014Методы решения систем линейных уравнений трехдигонального вида: прогонки, встречных прогонок, циклической редукции. Параллельные алгоритмы решения. Метод декомпозиции области. Основные возможности и особенности технологии CUDA. Анализ ускорения алгоритма.
дипломная работа, добавлен 21.06.2013Разработка программы на языке Turbo Pascal 7.0 для преобразования кинетической схемы протекания химических реакций при изотермических условиях в систему дифференциальных уравнений. Ее решение в численном виде методом Рунге-Кутта четвертого порядка.
курсовая работа, добавлен 06.01.2013Решение нелинейных краевых задач. Входные данные и содержание алгоритма Бройдена. Содержание алгоритма Бройдена. Метод исключения Гаусса для решения СЛАУ. Вывод формулы пересчета Бройдена. Разработка программы, исследование результата и примеры ее работы.
курсовая работа, добавлен 01.04.2010Характеристика методов решений систем линейных алгебраических уравнений, основные виды численных методов и применение программного продукта Delphi 5.0 как наиболее эффективного. Сущность методов Гаусса, Гаусса-Жордана и Якоби, особенности метода Зейделя.
курсовая работа, добавлен 25.06.2010Понятие определителя матрицы, математические и алгоритмические основы его расчета, функциональные модели, блок-схемы и программная реализация. Сущность метода Гаусса для решения систем линейных алгебраических уравнений и вычисления определителя матрицы.
контрольная работа, добавлен 18.01.2010Обзор существующих методов по решению нелинейных уравнений. Решение нелинейных уравнений комбинированным методом и методом хорд на конкретных примерах. Разработка программы для решения нелинейных уравнений, блок-схемы алгоритма и листинг программы.
курсовая работа, добавлен 15.06.2013Разработка программного продукта на языке Delphi 7.0. Матричный метод решения однородных и неоднородных систем линейных уравнений. Разработка интерфейса. Тестирование и описание объектов программы. Описание процесса вычисления определителей матриц.
курсовая работа, добавлен 04.02.2015Использование повторяющегося процесса. Нахождение решения за определенное количество шагов. Применение метода хорд и метода простой итерации. Методы нахождения приближенного корня уравнения и их применение. Построение последовательного приближения.
курсовая работа, добавлен 15.06.2013Автоматизация решения системы уравнения методом Гаусса (классического метода решения системы линейных алгебраических уравнений, остоящего в постепенном понижении порядка системы и исключении неизвестных) и решения уравнения методами хорд и Ньютона.
курсовая работа, добавлен 10.02.2011Суть метода Рунге-Кутта и его свойства. Решение дифференциальных уравнений первого порядка. Вычислительный блок Given/Odesolve. Встроенные функции rkfixed, Rkadapt, Bulstoer. Решения линейных алгебраических уравнений в среде MathCad и Microsoft Excel.
курсовая работа, добавлен 02.06.2014Понятия систем линейных уравнений и матриц. Решение общей системы линейных уравнений по методу Гаусса. Системные требования, методы установки, удаления и работы с программой. Методы защиты от неверного ввода данных. Тестирование и опытная эксплуатация.
курсовая работа, добавлен 25.02.2011Решение систем линейных уравнений на ЭВМ методом Крамера. Запуск Microsoft Visual Basic. Форма ввода размерности системы. Форма графика системы линейного уравнения. Матрица с неизвестными переменными. Программы построения графика и перехода между формами.
курсовая работа, добавлен 29.06.2011Основные методы структурного программирования. Методы половинного деления, Крамера, прямоугольников. Применение языка программирования Turbo Pascal 7.0. Решение системы линейных алгебраических уравнений. Описание стандартных и не стандартных функций.
курсовая работа, добавлен 14.01.2015Основные методы решения систем линейных уравнений. Применение способа единственного деления. Способ Гаусса с выбором главного элемента по столбцу и по всей матрице. Сравнение итерационных и прямых методов. Программа решения СЛАУ по методу Гаусса.
курсовая работа, добавлен 28.05.2015Принцип и значение метода Эйлера для расчета дифференциальных уравнений. Анализ его геометрического смысла. Улучшение метода за счет аппроксимации производной. Разработка блок-схем и программы на языке Turbo Pascal для проверки методов интегрирования.
курсовая работа, добавлен 15.06.2013Расчет корня нелинейного уравнения методом касательных, методом простой итерации, с использованием циклических ссылок, с помощью средств подбора параметра. Формирование на экране произвольного массива (матрицы) чисел и вычисление его элементов по строкам.
контрольная работа, добавлен 25.02.2011Поиск корня алгебраического уравнения. Формирование графических объектов на основе "Диаграмма Microsoft Graph". Системы линейных алгебраических уравнений. Алгоритм формирования и копирования матриц для вычисления определителей, вектора решения СЛАУ X.
контрольная работа, добавлен 11.05.2009Математическая модель, описание теории, применяемой к задаче. Обсчет точек методом Рунге-Кутта, модифицированным методом Эйлера, схема и листинг программы. Решение дифференциальных уравнений и построение графиков, решение уравнений в среде Turbo Pascal.
курсовая работа, добавлен 18.11.2009Постановка задачи линейного программирования. Решение системы уравнений симплекс-методом. Разработка программы для использования симплекс-метода. Блок-схемы основных алгоритмов. Создание интерфейса, инструкция пользователя по применению программы.
курсовая работа, добавлен 05.01.2015Методика реализации решения нелинейного уравнения в виде процедуры-подпрограммы следующими методами: хорд, касательных (Ньютона), простой итерации, половинного деления. Основные методы уточнения корней уравнения. Программное решение задачи, алгоритм.
курсовая работа, добавлен 27.03.2011Решение трансцендентного уравнения методом Ньютона. Построение графика функции. Блок-схема алгоритма решения задачи и программа решения на языке Pascal. Вычисление значения интеграла методом трапеции, блок-схема алгоритма, погрешности вычисления.
задача, добавлен 16.12.2009Основные леммы и теоремы для решения линейных интегральных уравнений методом итераций. Применение информационных технологий для вычисления функции, построение алгоритма для определения уравнения по ядру и отрезку интегрирования и правой части уравнения.
курсовая работа, добавлен 27.11.2010Интерполирование рабочих точек в пакете Mathcad с помощью полиномов (канонического, Лагранжа и Ньютона) и сплайнов (линейного, квадратичного, кубического). Реализация программы для решения системы линейных алгебраических уравнений на языке Pascal.
лабораторная работа, добавлен 15.11.2012