Основы математического анализа
Понятие и исследование функции четной, нечетной и симметричной относительной оси. Понятие интервалов знакопостоянства. Выпуклость и вогнутость, точки перегиба. Вертикальные и наклонные асимптоты. Наименьшее и наибольшее значения функции и интеграла.
Подобные документы
График функции распределения. Определение математического ожидания, дисперсии и среднеквадратичного отклонения случайной величины. Вынесение константы за знак интеграла и переход от несобственного интеграла к определенному, стоящему под знаком предела.
презентация, добавлен 01.11.2013Вычисление производной функции и ее критических точек. Определение знака производной на каждом из интервалов методом частных значений. Нахождение промежутков монотонности и экстремумов функции. Разложение подынтегральной функции на простейшие дроби.
контрольная работа, добавлен 09.04.2015- 28. Решение систем
Вычисление производной функции. Угловой коэффициент прямой. Интервалы монотонности, точки экстремума и перегиба функции. Вычисление интегралов с помощью универсальной тригонометрической подстановки. Нахождение площади фигуры, ограниченной линиями.
контрольная работа, добавлен 05.01.2013 Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение, добавлен 25.12.2010Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа, добавлен 25.11.2013Определение предела последовательности. Понятие производной и правила дифференцирования. Теоремы Роля, Лангража, правило Лапиталя. Исследования графиков функций. Таблица неопределенных и вычисление определенных интегралов. Функции нескольких переменных.
презентация, добавлен 17.03.2010Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.
курсовая работа, добавлен 23.11.2011Вид определенного интеграла от непрерывной на заданном отрезке функции. Сущность квадратурных формул. Нахождение численного значения интеграла с помощью методов левых и правых прямоугольников, трапеций, парабол. Выведение общей формулы Симпсона.
презентация, добавлен 18.04.2013Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа, добавлен 11.07.2013Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.
курсовая работа, добавлен 21.10.2011Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".
реферат, добавлен 04.08.2010Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.
курсовая работа, добавлен 21.08.2013Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа, добавлен 04.10.2010Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа, добавлен 24.06.2015Области определения и значений функции. Заданная, монотонная, ограниченная и неограниченная, непрерывная и разрывная, четная и нечетная функции. Определение асимптоты. Степенная функция с вещественным показателем. Квадратичная и логарифмическая функции.
реферат, добавлен 26.03.2013Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа, добавлен 01.06.2014Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
контрольная работа, добавлен 16.04.2010Особенности вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Определение площадей плоских фигур, ограниченных линиями, с использованием метода интегрирования в курсе математического анализа.
презентация, добавлен 17.09.2013Из всех прямоугольников с площадью 9 дм2 найдите тот, у которого периметр наименьший.Вычислить площадь фигуры, ограниченной линиями (сделав рисунок). Вычислить площадь фигуры, ограниченной линиями.
задача, добавлен 11.01.2004Определение производных сложных функций при заданном значении аргумента. Исследование траектории движения тела на плоскости и построение графика функции. Характеристика нахождения максимальных и минимальных точек, экстремумов и точек перегиба функции.
контрольная работа, добавлен 09.12.2011Полное исследование функции с помощью производных, построение графика функции, нахождение ее наибольшего и наименьшего значения на отрезке. Методика вычисления неопределенных и определенных интегралов. Нахождение общего решения дифференциального уравнения
контрольная работа, добавлен 26.02.2012Исследование методами математического анализа поведения функций при заданных значениях аргумента. Этапы решения уравнения функции и определения значения аргумента и параметра. Построение графиков. Сочетание тригонометрических, гиперболических функций.
контрольная работа, добавлен 20.08.2010Нахождение асимптоты. Геометрический смысл асимптоты. Общий метод нахождения асимптоты. Виды. Горизонтальная асимптота. Вертикальная асимптота. Наклонная асимптота. Асимптота - прямая или кривая линия, которая продолжена, приближается к другой кривой.
реферат, добавлен 26.05.2006Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.
презентация, добавлен 11.09.2011Пределы функции, ее полное исследование с использованием дифференциального исчисления. Вычисление неопределенных интегралов с использованием методов интегрирования. Определенный и несобственный интегралы. Числовые ряды, их исследование на сходимость.
контрольная работа, добавлен 07.04.2013