Независимость событий в примере Бернштейна с правильным тетраэдром
Независимость событий. Условная вероятность. Независимость событий и испытаний. События А и В называются независимыми, если Р(АВ) = Р(А). Если Р(В)>0, то независимость А и В эквивалентна равенству Р(А/В) = Р(А).
Подобные документы
Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа, добавлен 04.10.2010Нахождение вероятности того, что наудачу взятое натуральное число не делится. Построение гистограммы для изображения интервальных рядов, расчет средней арифметической дискретного вариационного ряда, среднего квадратического отклонения и дисперсии.
контрольная работа, добавлен 18.05.2009Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.
контрольная работа, добавлен 21.10.2012Характеристика основных правил и соединений комбинаторики. Классическая схема или схема случаев - испытание, при котором число исходов конечно и все из них равновозможные. Виды случайных событий. Дифференциальная функция распределения случайной величины.
учебное пособие, добавлен 24.03.2011История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа, добавлен 20.12.2009Вычисление площади Летнего сада Петра I и площади посадок, если она составляет 4/5 от площади сада. Расчет объема Летнего дворца, если известно, что он имеет форму прямоугольного параллелепипеда. Расчет массы золота на одной занавеске во дворце.
презентация, добавлен 09.10.2011Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.
дипломная работа, добавлен 22.01.2009Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача, добавлен 12.02.2011- 34. Цепи Маркова
Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа, добавлен 20.04.2011 Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа, добавлен 26.02.2012Теорема Ферма, ее формулировка и доказательство в случаях, если показатель степени n - нечетное число и если n - четное число. Теорема о единственности факторизации. Дополнительные обоснования теоремы. Состав наибольшего составного числового множителя.
статья, добавлен 28.05.2009Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.
лекция, добавлен 12.12.2011Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.
контрольная работа, добавлен 07.09.2010Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.
контрольная работа, добавлен 26.02.2012Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.
задача, добавлен 15.06.2012Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка, добавлен 25.12.2010Определение вероятности наступления заданного события. Расчет математических величин по формуле Бернулли и закону Пуассона. Построение эмпирической функции распределения, вычисление оценки математического ожидания и доверительных интегралов для него.
курсовая работа, добавлен 26.03.2012Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.
контрольная работа, добавлен 15.11.2010Інтеграл Фур'є для парної й непарної функції. Приклад розкладання функцій у тригонометричний ряд Фур'є. Визначення методів Бернштейна–Рогозинського. Наближення функцій за допомогою сум Бернштейна-Рогозинського. Сума, добуток і частка періодичних функцій.
курсовая работа, добавлен 07.07.2011Определение вероятности появления события в каждом из независимых испытаний. Случайные величины, заданные функцией распределения (интегральной функцией), нахождение дифференциальной функции (плотности вероятности), математического ожидания и дисперсии.
контрольная работа, добавлен 26.07.2010Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат, добавлен 22.12.2013Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат, добавлен 18.02.2014Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа, добавлен 21.01.2011Количественная оценка надежности. Возможности использования предельных теорем. Распространенные потоки случайных событий, их характеристики. Расчет надежности, основанный на составлении графа переходов изделия в разные состояния работоспособности.
курсовая работа, добавлен 12.06.2011Изучение наиболее типичных алгоритмов решения задач, имеющих вероятностный характер. Ознакомление с элементами комбинаторики, теорией урн, формулой Байеса, способами нахождения дискретных, непрерывных случайных величин. Рассмотрение основ алгебры событий.
методичка, добавлен 06.05.2010