Двойное векторное произведение
Векторы и основные линейные операции над ними. Понятие о скалярной величине, сложение и вычитание. Векторное произведение: понятие, свойства, особенности определения. Пример вычисления двойного векторного произведения. Доказательство тождества Лагранжа.
Подобные документы
Матричные и векторные вычисления; коллинеарные и компланарные векторы. Определение скалярного произведения векторных величин в трехмерном пространстве. Решение системы линейных уравнений с расширенной матрицей, элементарные преобразования над строками.
контрольная работа, добавлен 30.12.2010Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация, добавлен 21.09.2013Уравнение в дробях количества знаков после запятой, выполнение сложения и вычитания, не обращая внимания на запятую. Практическая значимость теории десятичных дробей. Самостоятельная работа с последующей проверкой результатов, выполнение вычислений.
презентация, добавлен 02.07.2010Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа, добавлен 26.09.2009Понятие двойного интеграла, условия его существования, свойства и методы вычисления: сведение двойного интеграла к повторному для прямоугольной и криволинейной областей; двойной интеграл в полярных координатах; замена переменных; вычисление объемов тел.
контрольная работа, добавлен 21.07.2013Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.
контрольная работа, добавлен 08.11.2009Основные определения геометрических векторов. Понятие коллинеарных и равных векторов. Простейшие операции над векторами, их проекция на ось. Понятие угла между векторами. Отсчет угла против часовой стрелки, положительная и отрицательная проекция.
реферат, добавлен 19.08.2009Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009Поверхностный интеграл второго рода, вычисление поверхности. Теорема Остроградского-Гаусса. Дивергенция, векторное поле скоростей. Поток вектора через замкнутую поверхность, направления внешней нормали. Поверхность произвольных частей.
реферат, добавлен 23.02.2011Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.
контрольная работа, добавлен 14.12.2012Теоретические основы аксиоматики Вейля. Непротиворечивость и категоричность аксиоматики Вейля, прямая, плоскость. Аксиоматика Вейля и школьная геометрия. Задачи, решаемые векторным способом. Виды задач о прямых и плоскостях, их решение и доказательство.
дипломная работа, добавлен 11.12.2012- 37. Формула Грина
Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа, добавлен 11.07.2012 Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация, добавлен 29.10.2013Классическая задача комбинаторики, ее решение "правилом произведения". Реализация реальных связей между объектами в математических терминах на абстрактных множествах. Решение задач на доказательство тождества, особенности решения системы уравнений.
контрольная работа, добавлен 30.09.2010Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009- 41. Логарифмы
Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Введение логарифмов математиками Дж. Непером и Иостом Бюрги. Логарифмические свойства и тождества. Различие таблиц натуральных и обычных лагорифмов.
презентация, добавлен 26.11.2012 Сложение и умножение целых p-адических чисел, определяемое как почленное сложение и умножение последовательностей. Кольцо целых p-адических чисел, исследование свойств их деления. Объяснение данных чисел с помощью ввода новых математических объектов.
курсовая работа, добавлен 22.06.2015Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.
контрольная работа, добавлен 05.11.2011Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа, добавлен 21.09.2013Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.
реферат, добавлен 23.02.2011Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа, добавлен 22.09.2009Операции в скалярных и векторных полях. Наиболее распространенные типы векторных полей и задачи, которые возникают при изучении этих полей. Потенциальное, гармоническое и соленоидальное векторное поле. Векторный потенциал поля. Задачи Дирихле и Неймана.
курсовая работа, добавлен 07.11.2013- 48. Теория множеств
Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа, добавлен 07.12.2012 - 49. Квадратные корни
Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.
реферат, добавлен 05.01.2010 История исследований в области теории дифференциальных квадратичных форм. Линейные преобразования, индексные обозначения и общее определение тензоров. Скалярное произведение и метрические тензоры, действия с тензорами, поднятие и опускание индексов.
курсовая работа, добавлен 18.06.2010