Равносильность уравнений
Понятие и содержание равносильных уравнений, факторы их оценивания. Теорема о равносильности уравнений и ее доказательство. Причины и пути приобретения посторонних корней при разрешении данных уравнений. Нахождение и сравнение множества решений.
Подобные документы
Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация, добавлен 16.01.2011Описание жизни Италии и мира того времени, когда жил и творил Джироламо Кардано. Научная деятельность математика, обзор его математических трудов и поиск решения кубических уравнений в радикалах. Способы решений уравнений третьей и четвертой степеней.
курсовая работа, добавлен 26.08.2011Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат, добавлен 14.08.2009Изучение способов приближенного решения уравнений с помощью графического изображения функций. Исследование метода определения действительных корней квадратного уравнения с помощью циркуля и линейки для приведенных семи уравнений, построение их графиков.
творческая работа, добавлен 04.09.2010Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа, добавлен 06.01.2011Методика отделения корней от заданных уравнений графическим методом и табулированием, а также половинным делением. Содержание, а также оценка преимуществ и недостатков использования метода итерации и касательных, условия их практического применения.
лабораторная работа, добавлен 24.09.2014Преобразования уравнений, нахождение соответствующих критериев подобия. Подобие стационарных и нестационарных физических полей. Масштабные преобразования алгебраических и дифференциальных уравнений. Моделирование задач с начальным и граничным условиями.
реферат, добавлен 20.01.2010Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа, добавлен 14.08.2010Характеристика видов математических уравнений - алгебраических и трансцендентных, их сравнение и отличительные особенности. Возможности метода замены неизвестного при решении алгебраических уравнений, применение в стандартных и нестандартных ситуациях.
контрольная работа, добавлен 21.09.2010Вычисление комплексных чисел, модуля и аргумента, извлечение кубических корней. Нахождение синусов и косинусов в алгебраическом виде. Решение системы уравнений с помощью формул Крамера, вспомогательных определителей и средствами матричного исчисления.
контрольная работа, добавлен 11.05.2013Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.
курсовая работа, добавлен 11.02.2014Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.
презентация, добавлен 08.12.2011Абсолютная величина и её свойства. Простейшие уравнения и неравенства с модулем. Графическое решение уравнений и неравенств с модулем. Иные способы решения данных уравнений. Метод раскрытия модулей. Использование тождества при решении уравнений.
курсовая работа, добавлен 21.12.2009Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.
курсовая работа, добавлен 12.10.2009- 40. Численные методы
Основные понятия теории погрешностей. Приближенное решение некоторых алгебраических трансцендентных уравнений. Приближенное решение систем линейных уравнений. Интерполирование функций и вычисление определенных интегралов, дифференциальных уравнений.
методичка, добавлен 01.12.2009 Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа, добавлен 16.12.2008Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.
курсовая работа, добавлен 25.11.2011Определители второго и третьего порядков, свойства определителей. Два способа вычисления определителя третьего порядка. Теорема разложения. Теорема Крамера, которая дает практический способ решения систем линейных уравнений используя определители.
лекция, добавлен 02.06.2008Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа, добавлен 16.12.2015Решение нелинейных уравнений. Отделения корней уравнения графически. Метод хорд и Ньютона. Система линейных уравнений, прямые и итерационные методы решения. Нормы векторов и матриц. Метод простых итераций, его модификация. Понятие про критерий Сильвестра.
курсовая работа, добавлен 15.08.2012Определения и параболические операторы. Принцип максимума для уравнений параболического типа. Применение принципа максимума при математическом моделировании процессов. Наличие экстремальных свойств уравнений. Решение уравнения теплопроводности.
курсовая работа, добавлен 22.08.2013Метод исследования Диофантовых уравнений и решенные этим методом: теорема Ферма, уравнение Пелля, эллиптических кривых, иррациональные корни уравнения, поиск Пифагоровых троек, уравнение Каталана, гипотезы Билля. Закон распределения простых чисел.
доклад, добавлен 01.05.2009Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа, добавлен 24.11.2013Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.
курсовая работа, добавлен 17.06.2014Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010