Методы численного дифференцирования функций
Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
Подобные документы
Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.
контрольная работа, добавлен 25.03.2014Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат, добавлен 10.08.2010Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.
задача, добавлен 20.02.2011Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа, добавлен 13.06.2012Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.
контрольная работа, добавлен 16.11.2010- 81. Решение систем
Вычисление производной функции. Угловой коэффициент прямой. Интервалы монотонности, точки экстремума и перегиба функции. Вычисление интегралов с помощью универсальной тригонометрической подстановки. Нахождение площади фигуры, ограниченной линиями.
контрольная работа, добавлен 05.01.2013 Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.
презентация, добавлен 18.04.2013Дифференциальное уравнение Бесселя и его интегралы. Рекуррентные формулы для данных функций. Применение теоремы Коши к интегралу Пуассона. Некоторые применения функций Бесселя. Задача на тепловое равновесие. Дифференциальное уравнение второго порядка.
курсовая работа, добавлен 06.06.2013Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.
контрольная работа, добавлен 06.02.2014Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.
контрольная работа, добавлен 19.01.2010Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.
курсовая работа, добавлен 22.10.2014Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.
дипломная работа, добавлен 14.09.2015Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация, добавлен 29.10.2013Особенности решения обыкновенного линейного неоднородного дифференциального уравнения второго порядка с заданными граничными условиями методом конечной разности. Составление трехдиагональной матрицы. Реализация решения в программе Microsoft Office Excel.
курсовая работа, добавлен 23.12.2013Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.
презентация, добавлен 26.01.2015Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка, добавлен 01.07.2009Medsmooth и supsmooth, линейное сглаживание данных по трем, пяти и семи точкам. Численное дифференцирование исходных и сглаженных данных с помощью второй формулы Гаусса и Бесселя, первая и вторая производная. Вычисление коэффициентов обусловленности.
лабораторная работа, добавлен 16.06.2014Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.
контрольная работа, добавлен 20.03.2016Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация, добавлен 18.09.2013Изменение порядка интегрирования функции. Поиск предела интегрирования. Расчет площади фигуры, ограниченной графиками функций. Поиск объема тела, ограниченного поверхностями. Определение производной скалярного поля в точке по направлению вектора.
контрольная работа, добавлен 28.03.2014Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.
презентация, добавлен 29.03.2016Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.
презентация, добавлен 24.06.2012Суть модифицированного метода Эйлера. Определение интерполяционного многочлена. Выведение формулы трапеций из геометрических соображений. Применение для расчетов интерполированного полинома Ньютона. Составление блок-схемы алгоритма решения уравнений.
курсовая работа, добавлен 14.02.2016Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.
дипломная работа, добавлен 29.01.2010Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
курсовая работа, добавлен 21.08.2009