Исследование задачи оптимизации кооперации разработчиков
Математическое моделирование и особенности задачи распределения. Обоснование и выбор метода решения. Ручное решение задачи (венгерский метод), а также с использованием компьютера. Формулировка полученного результата в сопоставлении с условием задачи.
Подобные документы
Решение систем уравнений по правилу Крамера, матричным способом, с использованием метода Гаусса. Графическое решение задачи линейного программирования. Составление математической модели закрытой транспортной задачи, решение задачи средствами Excel.
контрольная работа, добавлен 27.08.2009Выбор оптимального варианта распределения вертолетов по объектам удара и оценка его эффективности по математическому ожиданию поражаемой силы. Процесс математического моделирования прикладной задачи методом оптимизации аддитивной целевой функции.
курсовая работа, добавлен 18.12.2009Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.
контрольная работа, добавлен 06.04.2012Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.
презентация, добавлен 20.02.2015Применение метода дополнительного аргумента к решению характеристической системы. Доказательство существования решения задачи Коши. Постановка задачи численного расчёта. Дискретизация исходной задачи и её решение итерациями. Программа и её описание.
дипломная работа, добавлен 25.05.2014Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.
контрольная работа, добавлен 28.07.2013Понятие линейного программирования и его основные методы. Формулировка задачи линейного программирования в матричной форме и ее решение различными методами: графическим, табличным, искусственного базиса. Особенности решения данной задачи симплекс-методом.
курсовая работа, добавлен 30.11.2010Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.
курсовая работа, добавлен 18.06.2011Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.
курсовая работа, добавлен 21.05.2010О происхождении задачи удвоения куба (одной из пяти знаменитых задач древности). Первая известная попытка решения задачи, решение Архита Тарентского. Решение задачи в Древней Греции после Архита. Решения с помощью конических сечений Менехма и Эратосфена.
реферат, добавлен 13.04.2014Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка, добавлен 02.03.2010Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.
курсовая работа, добавлен 25.11.2011Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа, добавлен 30.04.2011Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.
курсовая работа, добавлен 29.11.2014Сущность моделирования, его главные цели задачи. Конструктивная схема и общее описание исследуемой трансмиссии. Алгоритм реализации задачи и ее программная реализация. Результаты расчета и их анализ. Исследование характеристик полученной модели.
курсовая работа, добавлен 01.01.2014Применение математических и вычислительных методов в планировании перевозок. Понятие и виды транспортных задач, способы их решения. Особенности постановки задачи по критерию времени. Решение транспортной задачи в Excel, настройка параметров решателя.
курсовая работа, добавлен 12.01.2011Метод регуляризующего множителя для решения задачи Гильберта для аналитических функций в случае произвольной односвязной области. Постановка краевой задачи типа Гильберта в классе бианалитических функций, а также решение конкретных примеров задач.
дипломная работа, добавлен 20.05.2013Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.
контрольная работа, добавлен 13.03.2012Постановка задачи коммивояжера и основные алгоритмы решения. Маршруты и пути. Понятия транспортной сети. Понятие увеличивающая дуга, цепь, разрез. Алгоритм Флойда-Уоршелл. Решение задачи аналитическим методом. Создание приложения для решения задачи.
курсовая работа, добавлен 08.10.2015Применение метода дискретной регуляризации Тихонова А.Н. для нахождения решения обратной задачи для однородного бигармонического уравнения в круге. Сведение дифференциальной задачи к интегральному уравнению; корректно и некорректно поставленные задачи.
курсовая работа, добавлен 20.10.2011Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа, добавлен 10.07.2012Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
контрольная работа, добавлен 07.06.2011Задачи Коши и методы их решения. Общие понятия, сходимость явных способов типа Рунге-Кутты, практическая оценка погрешности приближенного решения. Автоматический выбор шага интегрирования, анализ брюсселятора и метод Зонневельда для его расчета.
курсовая работа, добавлен 03.11.2011Алгоритм конструирования: выделение опорных утверждений, решение задачи, выбор утверждений для перефразировки и их изменение, перефразировка, решение полученной задачи. Обобщение. Конструкция. Частный случай. Перефразировка. Варьирование условий.
реферат, добавлен 14.10.2002