О w-насыщенных формациях с п-разложимым дефектом 1
В работе представлено описание не п-разложимых w-насыщенных формаций с п-разложимой максимальной w-насыщенной подформацией. Исследование структурного строения и классификации частично насыщенных формаций конечных групп. Методы абстрактной теории.
Подобные документы
Описание системы трехмерного визуализатора процесса дефрагментации с точки зрения системного анализа. Исследование преобразований состояний кубика Рубика с помощью математической теории групп. Анализ алгоритмов Тистлетуэйта и Коцембы решения головоломки.
курсовая работа, добавлен 26.11.2015Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.
контрольная работа, добавлен 04.09.2010Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.
курсовая работа, добавлен 22.09.2009Понятие и специфика Аддитивной теории чисел, ее содержание и значение. Описание основных проблем Аддитивной теории чисел: Варинга, Гольдбаха, Титчмарша. Методы решения данных проблем: редукция к производящим функциям, исследование структуры множеств.
курсовая работа, добавлен 18.12.2010Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа, добавлен 19.04.2011Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
дипломная работа, добавлен 08.08.2007Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.
лекция, добавлен 30.10.2013- 33. Группы матриц
Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа, добавлен 06.03.2014 Особенности факторизации четырехмерных симплектических групп. Исследование и анализ композиции геометрических преобразований. Характеристика изометрии, закономерных пространств. Методы решения структурных теорем – центры, коммутанты, теоремы о простоте.
дипломная работа, добавлен 14.02.2010Декартова система координат. Построение композиции отображений. Проверка полноты системы функций. Построение логической схемы однотактного триггера на заданном элементе памяти с использованием канонического метода структурного синтеза конечных автоматов.
контрольная работа, добавлен 18.02.2015Описание ненильпотентных групп с перестановочными обобщенно максимальными подгруппами. Изучение групп с Х-перестановочными I-максимальными подгруппами. Особенности групп, в которых 2-максимальные подгруппы перестановочны с 3-максимальными подгруппами.
курсовая работа, добавлен 02.03.2010Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат, добавлен 13.06.2011Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат, добавлен 24.12.2007Расчет стационарного теплового поля в двумерной пластине. Вычислительные методы для инженеров. Применение метода конечных элементов. Триангуляция. Метод конечных элементов.
курсовая работа, добавлен 31.10.2002Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа, добавлен 27.03.2011Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.
курсовая работа, добавлен 20.05.2013Бинарные отношения на множестве. Рефлективность, примеры рефлективности. Симметричность, транзитивность, отношение порядка. Примеры дестрибутивных и недестребутивных решеток. Основные определения и свойства теории структур. Операции над множествами.
курсовая работа, добавлен 04.06.2015Формации как классы групп, замкнутые относительно фактор-групп и подпрямых произведений, методика их произведения. Операции на классах групп, приводящие к формациям. Виды простейших свойств локальной формации всех групп с нильпотентным компонентом.
курсовая работа, добавлен 20.09.2009Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.
реферат, добавлен 08.08.2009Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.
презентация, добавлен 17.08.2015Решение линейной краевой задачи методом конечных разностей. Сопоставление различных вариантов развития процесса с применением анализа графиков, построенных на базе полученных данных. Графическое обобщение нескольких вариантов развития процесса.
лабораторная работа, добавлен 15.11.2010Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.
курсовая работа, добавлен 18.09.2009Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).
лекция, добавлен 28.06.2009Зависимость строения пленки и поверхностного натяжения. Решение задачи Плато для сложного контура. Принцип минимума энергии. Теория многогранников. Особенности строения контуров и натяжения мыльных пленок. Изучение строения мыльной пены в геометрии.
презентация, добавлен 24.04.2016Построение графа и таблицы поведения автомата. Нахождение системы булевых функций для возбуждения JK-триггеров, реализующих функции y. Определение булевой функции для реализации функции j. Составление логической схемы автомата, кодирование данных.
курсовая работа, добавлен 27.04.2011