Проценты и их применение
Обзор истории происхождения процентов, применение процентных вычислений в задачах. Решение задач по формуле сложных процентов разными способами, нахождение процентов от числа. Применение процентов в жизни: исследование бюджета семьи и посещения кружков.
Подобные документы
Непрерывное начисление сложных процентов. Общий метод приближённого вычисления эффективной процентной ставки, его применение для ссуды, платежи по которой совершаются через одинаковые промежутки времени. Сравнение методов простых и сложных процентов.
курсовая работа, добавлен 19.02.2014Описания доказательства вреда курения с помощью математических вычислений. Анализ развития вычислительных способностей учащихся, памяти, сообразительности. Нахождение процентов от числа и их выражения десятичной дробью, выполнение заданий на внимание.
презентация, добавлен 15.09.2011Расчет итоговой суммы вклада по схеме сложных процентов. Порядок составления плана погашения займа. Определение суммы, возвращаемой кредитору и процентных денег. Порядок расчета годовой учетной ставки с применением схемы простых и сложных процентов.
контрольная работа, добавлен 05.01.2013Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа, добавлен 17.05.2021Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.
курсовая работа, добавлен 05.12.2012Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.
дипломная работа, добавлен 25.06.2011Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.
курсовая работа, добавлен 16.05.2010Метод замены переменной при решении задач. Тригонометрическая подстановка. Решение уравнений. Решение систем. Доказательство неравенств. Преподавание темы "Применение тригонометрической подстановки для решения алгебраических задач".
дипломная работа, добавлен 08.08.2007Основные понятия оптимизационных задач. Нахождение наибольших или наименьших значений многомерных функций в заданной области. Итерационные процессы с учетом градиента. Функционал для градиентного равенства и применение его в задачах условной оптимизации.
реферат, добавлен 15.08.2009Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.
курсовая работа, добавлен 22.05.2022Основные теоремы и понятия дифференциального исчисления, связи между свойствами функции и её производных (или дифференциалов); применение математических методов в естествознании и технике. Решение уравнений и неравенств с помощью теорем Ролля и Лагранжа.
курсовая работа, добавлен 09.12.2011Краткая биографическая справка из жизни Пифагора. Сущность понятия "пифагоровы тройки", простые способы их формирования. Свойства троек, главные их следствия. Решение задачи на нахождение тангенса острого угла. Подсказки для выбора правильной "тройки".
презентация, добавлен 01.12.2012Шотландский барон Джон Непер как первый изобретатель логарифмов. Пропорции Непера для логарифмирования. Применение логарифмов Кеплером в Марбурге в 1624-1625 гг. Таблица положительных, отрицательных степеней числа 2. Гиперболические логарифмы, применение.
доклад, добавлен 24.12.2011Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
курсовая работа, добавлен 08.01.2013Понятия целой и дробной частей действительного числа. Основные свойства функции и ее график. Применение свойств функции y = [x] при решении уравнений и геометрических задач. Описание реальных процессов непрерывными функциями. Решение задач на делимость.
курсовая работа, добавлен 29.05.2016Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка, добавлен 02.03.2010- 17. Теорема Лагранжа
Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат, добавлен 14.03.2013 Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.
курсовая работа, добавлен 01.06.2014Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.
дипломная работа, добавлен 30.09.2009Физическое и математическое определение центра масс. Основные свойства центров масс. Изучение закона Харди-Вайнберга. Решение геометрических задач барицентрическим методом. Применение барицентрических координат в химических и топологических задачах.
курсовая работа, добавлен 25.02.2015Решения интегральных уравнений на полубесконечном промежутке с ядром, зависящим от разности аргументов с помощью метода Винера-Хопфа. Решение задач в случае бесконечного и полубесконечного промежутка. Применение метода Винера-Хопфа к уравнению Лапласа.
реферат, добавлен 18.05.2010Сущность и стадии развития тригонометрии. Свойства функции синус, косинус, тангенс, котангенс. Решение простых тригонометрических уравнений. Формула Эйлера как связь между математическим анализом и тригонометрией. Применение тригонометрических вычислений.
реферат, добавлен 15.06.2014- 23. Применение систем компьютерного моделирования (СКМ) для исследования математической модели RLC-цепи
Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа, добавлен 17.11.2016 Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.
контрольная работа, добавлен 30.01.2014Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012