Идентификация параметров осциллирующих процессов в живой природе, моделируемых дифференциальными уравнениями
Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
Подобные документы
Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача, добавлен 29.05.2012Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа, добавлен 17.06.2015Составление дифференциального уравнения для описания процессов в электрической схеме. Моделирование процессов при начальных условиях, при входном воздействии единичным скачком (функция Хевисайда), при заданном входном воздействии (Гауссов импульс).
курсовая работа, добавлен 08.06.2014Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.
курсовая работа, добавлен 12.10.2009Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.
курсовая работа, добавлен 28.06.2013Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.
курсовая работа, добавлен 30.09.2012Описание уравнениями в конечных разностях динамических процессов в дискретных системах управления. Операционный метод решения разностных уравнений, основанный на дискретном преобразовании Лапласа. Обобщение обычного преобразования на дискретные функции.
реферат, добавлен 21.08.2009Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат, добавлен 09.02.2009Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.
курсовая работа, добавлен 27.03.2011Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.
курсовая работа, добавлен 27.04.2011Оригинальный метод доказательства теоремы Ферма. Использование бинома Ньютона для решения диофантового уравнения. Решение теоремы Ферма при нечетных показателях степени n, при целых положительных и натуральных числах. Преобразование уравнения Ферма.
статья, добавлен 17.10.2009Решение первой задачи, уравнения Пуассона, функция Грина. Краевые задачи для уравнения Лапласа. Постановка краевых задач. Функции Грина для задачи Дирихле: трехмерный и двумерный случай. Решение задачи Неймана с помощью функции Грина, реализация на ЭВМ.
курсовая работа, добавлен 25.11.2011Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.
реферат, добавлен 10.09.2009Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа, добавлен 28.02.2011Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.
курсовая работа, добавлен 24.10.2010Определение частных производных первого и второго порядков заданной функции, эластичности спроса, основываясь на свойствах функции спроса. Выравнивание данных по прямой методом наименьших квадратов. Расчет параметров уравнения линейной парной регрессии.
контрольная работа, добавлен 22.07.2009Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.
контрольная работа, добавлен 22.04.2014Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.
контрольная работа, добавлен 16.03.2010Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.
реферат, добавлен 11.04.2014Определение линейного оператора. Норма линейного оператора. Обратные операторы. Абстрактные функции. Аналитические абстрактные функции и ряды Тейлора. Метод малого параметра в простейшем случае. Метод малого параметра в общем случае.
дипломная работа, добавлен 08.08.2007Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.
дипломная работа, добавлен 06.05.2010Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.
доклад, добавлен 26.04.2009Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.
контрольная работа, добавлен 15.01.2014Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.
контрольная работа, добавлен 26.02.2012- 125. Числовые ряды
Математическое описание последовательности чисел Фибоначчи. Представление фрагмента корзины "Гармония Мироздания" как образца формирования числовых рядов. Особенности построения живой спирали "Китовраса", ее практическое применение в древнем мире.
доклад, добавлен 16.01.2011