Власні значення і власні вектори матриці
Розгляд поняття матриці, видів (нульова, блочна, квадратна) та дій над нею. Аналіз способів знаходження власних векторів і власних значень матриць згідно методів Данілевського, Крилова, Леверрьє, невизначених коефіцієнтів та скалярних добутків.
Подобные документы
Розгляд найбільш відомих скінченно-різнецевих методів рішення рівнянь руху з непереривною силою: чисельна ітерація рівнянь Ньютона; алгоритм Бімана і Шофілда; метод Рунге-Кутта; методи Адамса, Крилова, Чаплигіна. Програма Рунге-Кутта на мові С#.
курсовая работа, добавлен 27.01.2011Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.
презентация, добавлен 06.02.2014Поняття вектора, його характерні риси та ознаки, порядок визначення координат та напряму. Додавання, віднімання та множення вектора на число. Тривимірний векторний простір і його підпростори. Колінеарність та компланарність векторів, їх скалярний добуток.
курсовая работа, добавлен 17.11.2009Таблиця основних інтегралів та знаходження невизначених інтегралів від елементарних функцій. Розкладання підінтегральної функції в лінійну комбінацію більш простих функцій. Метод підстановки або заміни змінної інтегрування. Метод інтегрування частинами.
реферат, добавлен 29.06.2011- 30. Твірні функції
Розгляд методів твірних функцій. Біном Ньютона як найбільш відомий приклад твірної функції. Розгляд задачі про щасливі білети. Аналіз властивостей твірних функцій. Характеристика найважливіших властивостей твірних функцій, особливості застосування.
курсовая работа, добавлен 12.09.2012 Характеристика, поняття, сутність, положення і особливості методів математичної статистики (дисперсійний, кореляційний і регресійний аналіз) в дослідженнях для обробки експериментальних даних. Розрахунки для обчислення дисперсії, кореляції і регресії.
реферат, добавлен 25.12.2010Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.
курсовая работа, добавлен 29.06.2011Похідна як основне поняття диференційного числення, що характеризує швидкість зміни функції, границя відношення приросту функції до приросту аргументу. Приклади знаходження похідної за визначенням. Похідні вищих порядків, геометричний зміст похідної.
презентация, добавлен 16.02.2011Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.
контрольная работа, добавлен 08.02.2010Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа, добавлен 20.04.2012Розв’язання системи рівнянь методом Крамера, методом оберненої матриці та методом Гаусса. Розрахунок довжини ребра, кута між ребрами, рівняння висоти, рівняння площини грані і кута між ребром та гранню. Дослідження функції та побудува її графіку.
контрольная работа, добавлен 30.10.2011Елементарний математичний апарат плоских геометричних проекцій. Ортографічне косокутне проектування на площину, застосування матриць. Розгляд проекцій картинної площини в лівосторонній системі координат спостерігача, погодження з екраном дисплея.
лабораторная работа, добавлен 19.03.2011Основні поняття з теорії рядів, характеристика методів підсумовування збіжних рядів. Особливості лінійних перетворень рядів, суть методів Ейлера, Куммера, Пуассона і Чезаро. Поняття суми розбіжного ряду, що задовольняє умовам регулярності і лінійності.
дипломная работа, добавлен 23.09.2012Розв'язання завдання графічним способом. Зображення розв'язку системи нерівностей, визначення досягнення максимуму та мінімуму функції. Розв'язання транспортної задачі методом потенціалів та симплекс-методом, формування оціночної матриці з елементів.
задача, добавлен 31.05.2010Поняття та значення симплекс-методу як особливого методу розв'язання задачі лінійного програмування, в якому здійснюється скерований рух по опорних планах до знаходження оптимального рішення. Розв'язання задачі з використанням програми Simplex Win.
лабораторная работа, добавлен 30.03.2015Дослідження системи лінійних алгебраїчних рівнянь на стійкість. Одержання характеристичного многочлена методом Левур’є, в основу якого покладено обчислювання слідів степенів матриці А. Приклад перевірки на стійкість систему Аx=B за допомогою програми.
курсовая работа, добавлен 29.08.2010Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.
реферат, добавлен 06.03.2011Визначення поняття "рівняння з параметрами", розгляд принципів рішення даних рівнянь на загальних випадках. Особливості методів розв'язання рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.
реферат, добавлен 15.02.2011Расширення запасу чисел. Знаходження коренів рівняння з достатнім степенем точності. Запис степеня многочлена та його коефіцієнтів. Контрольний приклад находження відрізків додатних та від’ємних коренів. Описання основних процедур та функцій програми.
курсовая работа, добавлен 28.03.2009Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.
курсовая работа, добавлен 13.05.2013Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції.
дипломная работа, добавлен 26.01.2011- 47. Використання властивості неперервності функції при розв'язуванні різних задач математичного аналізу
Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.
контрольная работа, добавлен 04.04.2012 Вивчення рівняння з однією невідомою довільного степеня та способів знаходження коренів таких рівнянь. Доведення основної теореми алгебри. Огляд способу Ньютона встановлення меж дійсних коренів алгебраїчних рівнянь. Відокремлення коренів методом Штурма.
курсовая работа, добавлен 06.10.2012Теоретичні матеріали щодо визначення методів дослідження лінійної залежності та незалежності функцій, проведення дослідження лінійної залежності систем функцій однієї змінної за визначенням і з використанням визначників матриць Вронського та Грама.
курсовая работа, добавлен 15.06.2013Поняття відносини залежності, розгляд відносин залежності на різних множинах. Теорема довільних та транзитивних просторів залежності. Зв'язок транзитивних відносин залежності з операторами замикання. Поняття простору залежності, транзитивності, матроїда.
курсовая работа, добавлен 20.01.2011