Окружность: основные теоремы и свойства

Понятие окружности и круга, основные теоремы и свойства. Касание прямой и окружности, случаи их взаимного расположения. Вписанные и описанные фигуры. Относительное положение двух окружностей. Свойства хорд и расстояние до них. Определение длин и площадей.

Подобные документы

  • Оптимальные фигуры многоугольников на плоскости. Соотношение размеров соседних фигур на плоскости на примере соприкасающихся окружностей. Реализация шестигранных ячеек в природе. Характеристика таких категорий: целое и части, дискретное и непрерывное.

    статья, добавлен 28.03.2012

  • Понятие и основные характеристики пространства Соболева, их главные свойства, сущность простейшей теоремы вложения. Порядок применения пространства Соболева для доказательства существования и единственности обобщённого решения уравнения Лапласа.

    курсовая работа, добавлен 12.10.2009

  • Элементы геометрии треугольника: изогональное и изотомическое сопряжение, замечательные точки и линии. Коники, связанные с треугольником: свойства конических сечений; коники, описанные около треугольника и вписанные в него; применение к решению задач.

    курсовая работа, добавлен 17.06.2012

  • Линия - общая часть двух смежных областей поверхности. Характеристика спиралей – плоских кривых линий. Кардиоида как плоская линия, описываемая фиксированной точкой окружности. Описание циклоида и астроида. Синусоидальная спираль как семейство кривых.

    контрольная работа, добавлен 17.11.2010

  • Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

    реферат, добавлен 08.05.2011

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация, добавлен 21.10.2011

  • Понятие, свойства, признаки и типы параллелепипеда как геометрической фигуры. Формулы расчета площади поверхности и объема параллелепипеда и куба. Определение высоты, общей длины ребер, суммы площадей наибольшей и наименьшей граней параллелепипеда.

    презентация, добавлен 06.12.2011

  • Понятие и основные свойства вложимой системы, необходимые условия вложимости и методы решения системы. Нахождение первого интеграла дифференциальной системы и условия его существования. Применение теоремы об эквивалентности дифференциальных систем.

    курсовая работа, добавлен 21.08.2009

  • Вспомогательные леммы. Теоремы Джексона для к-го обобщенного модуля гладкости. Обобщенное неравенство Минковского. Тригонометрический полином. Вычисление модулей гладкости для некоторых функций. Понятие прямой и обратной теоремы теории приближений.

    курсовая работа, добавлен 26.05.2013

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа, добавлен 20.05.2009

  • Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.

    научная работа, добавлен 18.01.2010

  • Формулировка и доказательство теоремы о простых числах в арифметической прогрессии (теорема Дирихле). Определение и основные свойства характеров. Суммы характеров и соотношение ортогональности. Характеры, L-функция Дирихле. Доказательство основных лемм.

    курсовая работа, добавлен 12.08.2009

  • Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.

    курсовая работа, добавлен 10.01.2010

  • Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.

    курсовая работа, добавлен 25.05.2010

  • Игры, повторяемые многократно, их отличительные свойства и этапы. Смешанные стратегии, условия и возможности их использования на практике. Аналитический метод решения игры типа 2 x 2. Основные теоремы для прямоугольных игр. Алгебраические решения.

    презентация, добавлен 23.10.2013

  • Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.

    презентация, добавлен 15.10.2013

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка, добавлен 30.04.2012

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация, добавлен 05.12.2010

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация, добавлен 04.04.2019

  • Основные понятия и теоремы. Свойства метризуемых пространств. Примеры метризуемых и неметризуемых пространств. Метризуемое пространство хаусдорфово. Метризуемое пространство нормально. Выполняется первая аксиома счетности.

    дипломная работа, добавлен 08.08.2007

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

  • Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.

    реферат, добавлен 05.01.2010

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа, добавлен 11.01.2011

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация, добавлен 21.01.2014

  • Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.

    краткое изложение, добавлен 25.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.