Элементы теории функций комплексного переменного
Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.
Подобные документы
- 26. Теорема Лагранжа
Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат, добавлен 14.03.2013 Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.
лекция, добавлен 12.06.2011Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа, добавлен 06.01.2011Теоретические аспекты обучения решению уравнений в 8 классе. Основные направления изучения линий уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Методико-педагогические основы обучения решению квадратных уравнений.
курсовая работа, добавлен 01.07.2008Изучение способов работы с файлами с помощью автоматического преобразования данных. Решение иррациональных уравнений методами хорд и половинного деления. Вычисление определенного интеграла. Решение систем линейных алгебраических уравнений. Ряды Фурье.
курсовая работа, добавлен 16.08.2012Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.
реферат, добавлен 03.03.2010Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат, добавлен 14.08.2009Определение, свойства и примеры функциональных уравнений. Основные методы их решения, доказательство некоторых теорем. Понятие группы функций, применение их при решении функциональных уравнений с несколькими переменными. Класс уравнений типа Коши.
курсовая работа, добавлен 01.10.2011Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.
презентация, добавлен 17.09.2013Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.
курсовая работа, добавлен 17.06.2014Выполнение алгебраических преобразований, логическая культура и техника исследования. Основные типы задач с параметрами, нахождение количества решений в зависимости от значения параметра. Основные методы решения задач, методы построения графиков функций.
методичка, добавлен 19.04.2010Решение систем линейных алгебраических уравнений методом исключения Гаусса. Табулирование и аппроксимация функций. Численное решение обыкновенных дифференциальных уравнений. Приближенное вычисление определенных интегралов. Решение оптимизационных задач.
курсовая работа, добавлен 21.11.2013Появление понятия функций Ляпунова. Развитие теории устойчивости движения. Применение функций Ляпунова к исследованию продолжимости решений дифференциальных уравнений. Методы построения функций Ляпунова, продолжимость решений уравнений третьего порядка.
дипломная работа, добавлен 29.01.2010Решение системы линейных алгебраических уравнений по формулам Крамер. Возведение комплексного числа в натуральную степень. Исследование функции на возрастание и убывание. Нахождение ординаты в экстремальной точке. Задача на вычисление длины дуги кривой.
контрольная работа, добавлен 13.12.2012Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.
дипломная работа, добавлен 27.05.2008Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат, добавлен 09.02.2009- 43. Эйлеровы графы
Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.
курсовая работа, добавлен 16.05.2016 Метод Зейделя как модификация метода простой итерации. Особенности решения систем линейных алгебраических уравнений. Анализ способов построения графика функций. Основное назначение формул Симпсона. Характеристика модифицированного метода Эйлера.
контрольная работа, добавлен 30.01.2014Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.
курсовая работа, добавлен 26.02.2011Структура и элементы, принципы формирования и правила разрешения систем линейных алгебраических уравнений. История развития различных методов решения: матричного, Крамера, с помощью функции Find. Особенности применения возможностей программы Mathcad.
контрольная работа, добавлен 09.03.2016Возведение в степень комплексного числа. Бинарная алгебраическая операция. Геометрическая интерпретация комплексных чисел. Базис, ранг и линейные комбинации для системы векторов. Кратные корни многочлена. Разложение многочлена на элементарные дроби.
контрольная работа, добавлен 25.03.2014Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.
курсовая работа, добавлен 27.03.2011Подход к решению уравнений. Формулы разности степеней. Понижение формы члена уравнения. Компьютерный поиск данных чисел. Система Диофантовых уравнений. Значения натурального ряда. Уравнения с нечётным числом членов решений в натуральных числах.
доклад, добавлен 26.04.2009Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа, добавлен 29.05.2012