Показательная и тригонометрические функции комплексного переменного

Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.

Подобные документы

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация, добавлен 17.09.2013

  • Запись комплексного числа в алгебраической, тригонометрической и показательной формах. Изображение корней уравнения на комплексной плоскости. Умножение и сложение матриц. Вычисление определителя четвертого порядка. Проверка совместимости систем уравнений.

    контрольная работа, добавлен 13.12.2012

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация, добавлен 17.09.2013

  • Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.

    контрольная работа, добавлен 09.09.2009

  • Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.

    краткое изложение, добавлен 25.12.2010

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция, добавлен 12.06.2011

  • Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.

    презентация, добавлен 17.09.2013

  • Использование признаков Коши и Лейбница для исследования абсолютной и условной сходимости рядов. Применение теории вероятности для изучения закономерности случайных явлений. Основные действия над комплексными числами. Решение задач симплексным методом.

    контрольная работа, добавлен 04.02.2012

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка, добавлен 26.06.2010

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация, добавлен 16.12.2011

  • Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.

    презентация, добавлен 17.09.2013

  • Рассмотрение понятия функции комплексного переменного; определение условий ее однозначности и многозначности. Установление функцией w=f(z) зависимости между точками плоскостей Z и W. Пример нахождения образа прямой при заданном отображении функции.

    презентация, добавлен 17.09.2013

  • Понятие знакочередующихся рядов. Последовательность частичных сумм четного и нечетного числа членов. Исследование сходимости ряда. Проверка выполнения признака Лейбница. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда.

    презентация, добавлен 18.09.2013

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа, добавлен 03.01.2008

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа, добавлен 29.05.2012

  • Учебно-методическое пособие дает возможность изучить необходимые теоретические сведения и получить практические навыки по решению задач, связанных с функциями комплексного переменного. Применение комплексных чисел при решении алгебраических уравнений.

    методичка, добавлен 23.12.2009

  • Числовой ряд - бесконечная последовательность чисел, соединенных знаком сложения. Сумма n первых членов ряда. Функция натурального аргумента. Свойства сходящихся и расходящихся рядов. Понятие и формула расчета n-ного остатка. Поиск суммы исходного ряда.

    презентация, добавлен 18.09.2013

  • Нахождение производных заданной функции. Частные производные первого и второго порядка. Вычисление неопределенных интегралов. Решение задачи комбинаторики. Расчет коэффициентов прямых материальных затрат с помощью межотраслевого балансового метода.

    контрольная работа, добавлен 15.04.2013

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа, добавлен 15.06.2011

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа, добавлен 10.04.2011

  • Изучение изменений анализируемых показателей во времени как важнейшая задача статистики. Понятие рядов динамики (временных рядов). Числовые значения того или иного статистического показателя, составляющего ряд динамики. Классификация рядов динамики.

    презентация, добавлен 28.11.2013

  • Ознакомление с математическим аппаратом анализа временных рядов и моделями авторегрессии. Составление простейших моделей авторегрессии стационарных временных рядов. Оценка дисперсии и автоковариации, построение графика автокорреляционной функции.

    лабораторная работа, добавлен 14.03.2014

  • Определение понятия антипростого числа как естественного обобщения правильных степеней. Доказательство постулата Бертрана и китайской теоремы об остатках. Исследование натуральных рядов, частоты и последовательности встречаемости антипростых чисел.

    реферат, добавлен 18.01.2011

  • Основное свойство рядов с неотрицательными членами. Необходимое и достаточное условие сходимости. Предельный признак сравнения. Расходящийся гармонический ряд. Ряды с положительными членами; определение конечного предела отношения их общих членов.

    презентация, добавлен 18.09.2013

  • Особенности дифференциального исчисления. Использование правила Коши при разложении в ряд функций cos x и sin x для перемножения рядов. Запись элементов бесконечной матрицы в форме последовательности. Абсолютная сходимость рядов, порождаемых матрицей.

    курсовая работа, добавлен 06.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.