Оценка состояния объекта, подвергающегося воздействию, на основе построений функций принадлежности
Понятие нечеткого множества и свойства его элементов. Определение логических операций: отрицания, конъюнкции, дизъюнкции. Основные этапы нечеткого вывода, метод центра тяжести. Оценка состояния повреждения объекта на основе теории нечетких множеств.
Подобные документы
Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации.
презентация, добавлен 29.10.2013Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.
презентация, добавлен 23.12.2013Вопросы сводимости функций. Символы логических операций: отрицания, конъюнкции, дизъюнкции, импликации. Кванторы общности и существования. Минимальные элементы верхней полурешетки m-степеней. Идеалы полурешетки m-степеней частично рекурсивных функций.
контрольная работа, добавлен 06.05.2009Математическая теория нечетких множеств, история развития. Функции принадлежности нечетких бинарных отношений. Формирование и оценка перспективного роста предприятия оптовой торговли. Порог разделения ассортимента, главные особенности его определения.
контрольная работа, добавлен 08.11.2011Функция принадлежности в форме трапеции, ее представление. Составление проекта бюджета. Сумма и разность нечетких переменных. Операция нечеткого выбора. Порядок вычисления бюджета. Решение задачи с использованием трапециевидной функции принадлежности.
презентация, добавлен 15.10.2013Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.
курсовая работа, добавлен 07.02.2011Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.
курсовая работа, добавлен 22.04.2014Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
дипломная работа, добавлен 08.08.2007Представление булевой функции в виде дизъюнктивной нормальной формы. Выражение всех логических операции в формуле через конъюнкции, дизъюнкции и отрицания. Сокращение количества слагаемых, входящих в формулу и количества переменных, входящих в слагаемое.
контрольная работа, добавлен 06.05.2013Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.
презентация, добавлен 23.12.2012- 11. Теория множеств
Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа, добавлен 07.12.2012 Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.
презентация, добавлен 17.04.2013Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.
дипломная работа, добавлен 30.03.2011Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.
презентация, добавлен 12.12.2012Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат, добавлен 24.12.2007Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция, добавлен 25.03.2012Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.
курсовая работа, добавлен 28.05.2007Понятие и сущность системы со структурным резервированием. Классификация и разновидности. Описание особенностей каждого из разновидностей. Определение вероятности работоспособного состояния объекта. Уровень надежности объекта резервирования, его расчет.
курсовая работа, добавлен 05.03.2009Мономорфные стрелки. Эпиморфные стрелки. Изострелки. КатегориЯ множеств. Мономорфизм в категории множеств. Эпиморфизм в категории множеств. Начальные и конечные объекты в категории множеств. Произведение в категории множеств.
дипломная работа, добавлен 08.08.2007Типичные примеры рефлексивных бинарных отношений. Понятие множества и его элементов. Операции над множествами: объединение, пересечение и разность. Декартово произведение множеств. Отношения функциональные, эквивалентности, порядка. Отношения степени n.
контрольная работа, добавлен 08.11.2009Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Литералы рассуждения и вопрос об их отрицаниях. Математическая модель отрицания для рассуждения, содержащего связную совокупность суждений. Отрицания в математической логике и дополнения в алгебре множеств. Интерпретации формул математической логики.
контрольная работа, добавлен 03.09.2010Свойства алгебры Жегалкина. Действия с логическими константами (нулём и единицей). Свойства элементарных булевых функций, задаваемых логическими операциями. Способы построения полиномов с помощью таблиц истинности (метод неопределенных коэффициентов).
курсовая работа, добавлен 28.11.2014Определение понятия множеств Г. Кантора, их примеры и обозначения. Способы задания, включение и равенство множеств, операции над ними: объединение, пересечения, разность, дополнение, их определение и наглядное представление на диаграмме Эйлера-Венна.
реферат, добавлен 11.03.2009Предпосылки развития алгебры множеств. Основы силлогистики и соотношение между множествами. Применение и типы жергонновых отношений. Понятие пустого множества и универсума. Построение диаграмм Эйлера и обоснование законов транзитивности и контрапозиции.
контрольная работа, добавлен 03.09.2010