Свойство централизаторов конгруэнций универсальных алгебр
Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
Подобные документы
Описание Н-критических формаций для некоторых наиболее известных формаций Н. При изучении внутреннего строения, а также классификации насыщенных формаций важную роль играют так называемые минимальные насыщенные не Н-формации или Н-критические формации.
дипломная работа, добавлен 02.03.2010Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа, добавлен 20.12.2009Проблема получения описания строения w-насыщенных формаций конечных групп, имеющих заданную решетку подформаций. Некоторые сведения и варианты решения проблемы описания w-насыщенных формаций Hw-дефекта, не превосходящего 2, для произвольной формации.
курсовая работа, добавлен 21.12.2009В работе представлено описание не п-разложимых w-насыщенных формаций с п-разложимой максимальной w-насыщенной подформацией. Исследование структурного строения и классификации частично насыщенных формаций конечных групп. Методы абстрактной теории.
курсовая работа, добавлен 21.12.2009Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа, добавлен 02.03.2010Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009Место теории конечных групп в алгебре. Формация как класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений. Локальный метод Гашюца и его развитие. Свойства частично насыщенных формаций с заданной структурой подформаций.
дипломная работа, добавлен 02.02.2010Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.
курсовая работа, добавлен 22.09.2009История развития и становления математического понятия функции. Абстрактные характеристики упорядоченных алгебр многоместных функций: P-алгебры и D-алгебры. Исследование теории суперпозиций алгебраических структур n-местных функций Менгера и Глускера.
курсовая работа, добавлен 22.12.2015Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).
дипломная работа, добавлен 14.02.2010Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.
курсовая работа, добавлен 14.02.2010Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа, добавлен 07.03.2010Теорія формацій алгебраїчних систем. Основні визначення, позначення й використовувані результати. Властивості централізаторів конгруенції універсальних алгебр. Формаційні властивості нильпотентних алгебр. Класи абелевих алгебр і їхні властивості.
дипломная работа, добавлен 20.01.2011Исследование доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y.
статья, добавлен 29.08.2004Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
дипломная работа, добавлен 18.09.2009Основополагающие понятия теории графов и теории групп. Определение эквивалентности, порождаемой группой подстановок, и доказательство леммы Бернсайда о числе классов такой эквивалентности. Сущность перечня конфигурации, доказательство теоремы Пойа.
курсовая работа, добавлен 20.05.2013Описание свойств наследственных насыщенных формаций Фиттинга (замкнутые относительно произведения F-подгрупп) Шеметкова (где минимальная не F-группа является либо группой Шмидта с ненормальной циклической силовой подгруппой, либо простого порядка).
курсовая работа, добавлен 14.02.2010Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.
курсовая работа, добавлен 24.10.2010Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа, добавлен 26.09.2009Основные понятия, определения, свойства и примеры банаховых алгебр, понятие идеала, доказательство леммы. Определение спектра и резольвенты. Теорема о фактор-алгебре, ее следствия. Линейные непрерывные мультипликативные функционалы и максимальные идеалы.
курсовая работа, добавлен 30.09.2011Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат, добавлен 18.02.2014Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.
презентация, добавлен 15.10.2013Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат, добавлен 08.02.2013Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа, добавлен 21.09.2013