Математическое программирование
Вычисление координат экстремумов. Многоугольник решений, вектор нормали и начальная симплекс-таблица. Неотрицательные решения системы неравенств. Оптимизирующая функция и ее минимум. Разница потенциалов, условие оптимальности и система потенциалов.
Подобные документы
Формы задачи линейного программирования, каноническая форма. Симплекс-метод: теоретические основы, прямой алгоритм; метод Гомори. Математическая и техническая постановка задачи, программная реализация: запуск, графический интерфейс и созданные функции.
курсовая работа, добавлен 04.02.2011Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Теоремы двойственности и их использование в задачах ЛП. Транспортная задача и её решение методом потенциалов. Интерполирование табличных функций.
курсовая работа, добавлен 31.03.2014Симплекс-метод решения задач линейного программирования. Элементы теории игр. Системы массового обслуживания. Транспортная задача. Графоаналитический метод решения задач линейного программирования. Определение оптимальной стратегии по критерию Вальде.
контрольная работа, добавлен 24.08.2010Основы теории матричных игр. Причины неопределенности результата. Смешанные стратегии в матричных играх. Свойства решений. Определение смешанных стратегий с использованием геометрической интерпретации. Нахождение неотрицательных решений неравенств.
контрольная работа, добавлен 13.04.2014Составление математической модели задачи. Расчёт оптимального плана перевозок с минимальной стоимостью с использованием метода потенциалов. Оптимальный вариант специального передвижного оборудования для технического обеспечения управления производством.
контрольная работа, добавлен 01.06.2014Способы решения задач линейного программирования с вещественными числами симплекс-методом. Общие задачи, формы записи, максимизация и минимизация функции методом искусственного базиса. Пути поиска и исключения из базиса искусственных переменных.
контрольная работа, добавлен 09.02.2013Математическая формулировка задачи линейного программирования. Применение симплекс-метода решения задач. Геометрическая интерпретация задачи линейного программирования. Применение методов линейного программирования к экстремальным задачам экономики.
курсовая работа, добавлен 05.10.2014Основы моделирования, прямые и обратные задачи. Линейное программирование и методы решения задач: графический, симплекс-метод. Нахождение решения транспортных и распределительных задач. Теория массового обслуживания. Имитационное моделирование.
курс лекций, добавлен 01.09.2011Построение асимптотических логарифмических амплитудно- и фазочастотных характеристик. Расчет оптимального плана и экстремального значения функции цели с помощью симплекс-метода. Нахождение экстремума заданной функции с учетом системы ограничений.
курсовая работа, добавлен 25.05.2015Математическая модель задачи (транспортная матрица с опорным планом северо-западного угла) и её решение вычислением потенциалов, графическим, фиктивного пункта методами. Проверка решений на оптимальность, нахождение новых схем пунктов перевозок.
контрольная работа, добавлен 15.12.2009Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.
контрольная работа, добавлен 11.06.2011Примеры решения задач линейного программирования в Mathcad и Excel. Нахождение минимума функции f(x1, x2) при помощи метода деформируемого многогранника. Построение многофакторного уравнения регрессии для решения экономико-статистической задачи.
курсовая работа, добавлен 17.12.2011- 38. Оптимизационные задачи в экономике и алгоритмы решения некоторых задач линейного программирования
Математическая формализация оптимизационной проблемы. Геометрическая интерпретация стандартной задачи линейного программирования, планирование товарооборота. Сущность и алгоритм симплекс-метода. Постановка транспортной задачи, последовательность решения.
учебное пособие, добавлен 07.10.2014 Математическая постановка и алгоритм решения транспортной задачи. Сбалансированность и опорное решение задачи. Методы потенциалов и северо-западного угла. Блок-схема. Формы входной и выходной информации. Инструкция для пользователя и программиста.
курсовая работа, добавлен 10.11.2008Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.
курсовая работа, добавлен 04.05.2011Виды задач линейного программирования и формулировка задачи. Сущность оптимизации как раздела математики и характеристика основных методов решения задач. Понятие симплекс-метода, реальные прикладные задачи. Алгоритм и этапы решения транспортной задачи.
курсовая работа, добавлен 17.02.2010Типы транспортных задач и методы их решения. Поиск оптимального плана перевозок методом потенциалов. Решение задачи с использованием средств MS Excel. Распределительный метод поиска оптимального плана перевозок. Математическая модель, описание программы.
курсовая работа, добавлен 27.01.2011Количественное обоснование управленческих решений по улучшению состояния экономических процессов методом математических моделей. Анализ оптимального решения задачи линейного программирования на чувствительность. Понятие многопараметрической оптимизации.
курсовая работа, добавлен 20.04.2015Решение задачи линейного программирования симплекс-методом. План перевозок при минимальных затратах на них. Определение оптимального значения изменения численности работников. Решение матричной игры двух лиц с применением чистой и смешанной стратегий.
контрольная работа, добавлен 16.05.2013Многошаговые процессы в динамических задачах. Принцип оптимальности и рекуррентные соотношения. Метод динамического программирования. Задачи оптимального распределения средств на расширение производства и планирования производственной программы.
курсовая работа, добавлен 30.12.2010Применение методов нелинейного программирования для решения задач с нелинейными функциями переменных. Условия оптимальности (теорема Куна-Таккера). Методы условной оптимизации (метод Вульфа); проектирования градиента; штрафных и барьерных функций.
реферат, добавлен 25.10.2009Математическая модель задачи принятия решения в условиях риска. Нахождение оптимального решения по паре критериев. Построение реализационной структуры задачи принятия решения. Ориентация на математическое ожидание, среднеквадратичное отклонение.
курсовая работа, добавлен 16.09.2013Построение базовой аналитической модели. Описание вычислительной процедуры. Решение задачи оптимизации на основе симплекс-таблиц. Анализ на чувствительность к изменению. Примеры постановок и решений перспективных оптимизационных управленческих задач.
курсовая работа, добавлен 16.02.2015Задача линейного программирования: определение количества продуктов для получения максимального дохода от реализации, расчет цены для минимальной общей стоимости затрат на производство с помощью графического и симплекс-метода. Решение транспортных задач.
курсовая работа, добавлен 06.05.2011Суть метода нелинейного программирования Зойтендейка, основные расчетные формулы. Оптимизация нахождения минимума дважды непрерывно дифференцируемой функции в сжатые сроки непрямым методом линейного решения. Алгоритм решения задачи и его блок-схема.
курсовая работа, добавлен 12.02.2014