Нильпотентная длина конечных групп с известными добавлениями к максимальным подгруппам
Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
Подобные документы
Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа, добавлен 14.12.2009Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа, добавлен 20.12.2009Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа, добавлен 21.09.2013Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа, добавлен 02.03.2010Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа, добавлен 19.04.2011Характеристика и основополагающие свойства силовых подгрупп конечных групп, определение и доказательство соответствующих лемм. Понятие и свойства супердобавлений. Строение группы с максимальной и силовской подгруппой, обладающей супердобавлением.
курсовая работа, добавлен 05.01.2010Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа, добавлен 22.09.2009Цепь как совокупность вложенных друг в друга подгрупп. Описание и применение теоремы Гольфанда. F-абнормальная максимальная подгруппа из G либо p-нильпотентна как бипримарная группа Миллера-Морено. Понятие группы Фробениуса с циклической подгруппой.
курсовая работа, добавлен 07.03.2010Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа, добавлен 07.03.2010Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.
курсовая работа, добавлен 06.06.2012Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа, добавлен 26.09.2009Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.
курсовая работа, добавлен 10.04.2011Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа, добавлен 22.09.2009Место теории конечных групп в алгебре. Формация как класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений. Локальный метод Гашюца и его развитие. Свойства частично насыщенных формаций с заданной структурой подформаций.
дипломная работа, добавлен 02.02.2010Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.
курсовая работа, добавлен 02.03.2010Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа, добавлен 22.09.2009Проблема получения описания строения w-насыщенных формаций конечных групп, имеющих заданную решетку подформаций. Некоторые сведения и варианты решения проблемы описания w-насыщенных формаций Hw-дефекта, не превосходящего 2, для произвольной формации.
курсовая работа, добавлен 21.12.2009Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).
дипломная работа, добавлен 14.02.2010Понятия локальных экранов и формаций, основанных на определении центральных рядов, их роль в теории формаций конечных групп, мультиколец и других алгебраических систем. Определение мультикольца, его идеала, централизатора, теоремы и их доказательства.
дипломная работа, добавлен 18.09.2009Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.
курсовая работа, добавлен 22.09.2009- 21. Группы матриц
Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа, добавлен 06.03.2014 Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат, добавлен 08.02.2013Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа, добавлен 27.03.2011Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.
лекция, добавлен 30.10.2013Описание свойств наследственных насыщенных формаций Фиттинга (замкнутые относительно произведения F-подгрупп) Шеметкова (где минимальная не F-группа является либо группой Шмидта с ненормальной циклической силовой подгруппой, либо простого порядка).
курсовая работа, добавлен 14.02.2010