Матрицы, Метод Гаусса
Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
Подобные документы
Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.
контрольная работа, добавлен 19.06.2009Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
курсовая работа, добавлен 01.12.2009Суть метода Зейделя. Расчет разностных схемам относительно неизвестной сеточной функции. Параллельное решение систем линейных алгебраических уравнений. Процедура построения параллельного алгоритма Зейделя. Оценка ускорения представленного алгоритма.
контрольная работа, добавлен 09.01.2011Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.
контрольная работа, добавлен 16.12.2015Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа, добавлен 18.11.2013Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.
учебное пособие, добавлен 04.03.2010Размеры прямоугольной, квадратной, диагональной, скалярной матриц. Линейные операции над матрицами. Умножение строки на столбец (скалярное произведение). Транспонирование матрицы, ее элементы. Образование треугольной таблицы, состоящей из строк, столбцов.
презентация, добавлен 03.12.2016Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.
контрольная работа, добавлен 26.02.2012Понятие и типы матриц. Определители (детерминанты) квадратной матрицы и их свойства. Алгебраические действия над матрицами. Теоремы Лапласа и аннулирования. Понятие и свойства обратной матрицы, алгоритм ее построения. Единственность обратной матрицы.
курс лекций, добавлен 27.05.2010Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.
курсовая работа, добавлен 01.10.2009Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа, добавлен 14.01.2015Классификация способов нахождения обратной матрицы, полученной в системе MathCAD с помощью миноров и алгебраических дополнений: разбиения ее на клетки и на произведение 2-х треугольных матриц; с помощью модели Гаусса. Вычисление погрешности методов.
лабораторная работа, добавлен 31.10.2012Базовые действия над матрицами. Решение матричных уравнений с помощью обратной матрицы и с помощью элементарных преобразований. Понятия обратной и транспонированной матриц. Решение матричных уравнений различных видов: АХ=В, ХА=В, АХВ=С, АХ+ХВ=С, АХ=ХА.
курсовая работа, добавлен 09.09.2013- 114. Действия с матрицами
Определение, свойства, виды и историческое происхождение матриц. Расчет определителя третьего порядка. Правило Саррюса для треугольников. Алгоритм построения и единственность обратной матрицы. Исследование линейных отображений векторных пространств.
контрольная работа, добавлен 12.12.2013 Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.
контрольная работа, добавлен 09.10.2011Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.
курсовая работа, добавлен 11.06.2014Задачи и методы линейной алгебры. Свойства определителей и порядок их вычисления. Нахождение обратной матрицы методом Гаусса. Разработка вычислительного алгоритма в программе Pascal ABC для вычисления определителей и нахождения обратной матрицы.
курсовая работа, добавлен 01.02.2013Математические и педагогические основы исследования системы линейных уравнений. Компьютерная математика Mathcad. Конспекты уроков элективного курса "Изучение избранных вопросов по математике с использованием системы компьютерной математики Mathcad".
дипломная работа, добавлен 03.05.2013Алгоритм решения задач по теме "Матрицы". Исследование на совместность системы линейных алгебраических уравнений, пример их решения по правилу Крамера. Определение величины угла при вершине в треугольнике, длины вектора. Исследование сходимости рядов.
контрольная работа, добавлен 19.03.2011- 120. Численные методы
Решение системы линейных уравнений с неизвестными методами Гаусса, Зейделя и простой итерации. Вычисление корня уравнения методами дихотомии, хорды и простой итерации. Нахождение приближённого значения интеграла с точностью до 0,001 методом Симпсона.
контрольная работа, добавлен 05.07.2014 Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа, добавлен 10.04.2014- 122. Высшая математика
Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.
контрольная работа, добавлен 12.11.2012 - 123. Матрицы и операторы
Интерпретация ортогональной и унитарной матрицы. Основные детерминанты матриц. Определение комплексных квадратных невырожденных и вырожденных матриц. Методы нахождения определителя. Метод конденсации Доджсона. Кососимметричная полилинейная функция строк.
курсовая работа, добавлен 04.06.2015 Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.
дипломная работа, добавлен 14.09.2015Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010