Золотое сечение
Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
Подобные документы
Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
презентация, добавлен 27.02.2012Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.
презентация, добавлен 12.05.2011Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат, добавлен 24.11.2009Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат, добавлен 09.04.2012Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.
презентация, добавлен 14.12.2011Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.
курсовая работа, добавлен 11.09.2012Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.
презентация, добавлен 16.10.2013Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа, добавлен 10.06.2014Задача нахождения экстремума: сущность и содержание, оптимизация. Решение методами квадратичной интерполяции и золотого сечения, их сравнительная характеристика, определение основных преимуществ и недостатков. Количество итераций и оценка точности.
курсовая работа, добавлен 25.08.2014Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.
контрольная работа, добавлен 06.08.2010Определение пирамиды как геометрической фигуры, ее виды. Проекция треугольной пирамиды. Основные свойства полной и усеченной пирамиды, нахождение площади и объема, плоские сечения. Пример построения сечения пирамиды с плоскостью по заданным параметрам.
практическая работа, добавлен 16.06.2009Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.
курсовая работа, добавлен 15.07.2010- 14. Сечения конуса
Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.
презентация, добавлен 12.12.2013 Понятие конических сечений. Конические сечения-пересечения плоскостей и конусов. Виды конических сечений. Построение конических сечений. Коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка.
реферат, добавлен 05.10.2008"Конические сечения" Аполлония. Вывод уравнения кривой для сечения прямоугольного конуса вращения. Вывод уравнения для параболы, для эллипса и гиперболы. Инвариантность конических сечений. Дальнейшее развитие теории конических сечений в трудах Аполлония.
реферат, добавлен 04.02.2010Изучение методов одномерной оптимизации и сравнение эффективности их применения для конкретных целевых функций. Нахождение минимума функции 1/|x-3|3 методами перебора, поразрядного поиска, дихотомии, золотого сечения, средней точки, хорд и Ньютона.
курсовая работа, добавлен 25.12.2015- 18. Числа Фибоначи
Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.
презентация, добавлен 15.06.2017 Определение понятия пропорции, ее крайних и средних членов и их соотношения. Примеры решения уравнений и практическое применение пропорции. Основные свойства соразмерностей и изменение положения ее членов в равенстве. Поиск неизвестного пропорции.
презентация, добавлен 15.02.2011Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа, добавлен 08.01.2016Математическая задача оптимизации. Минимум функции одной и многих переменных. Унимодальные и выпуклые функции. Прямые методы безусловной оптимизации и минимизации, их практическое применение. Методы деления отрезка пополам (дихотомия) и золотого сечения.
курсовая работа, добавлен 26.08.2009- 22. Призма
Понятие призмы в геометрии. Прямые и наклонные призмы, характеристика их оснований, боковых ребер и граней. Площадь боковой поверхности, теорема, ее доказательство и следствие. Сечение призмы плоскостью. Особенности сечения и симметрии правильной призмы.
презентация, добавлен 08.03.2012 Методы нахождения минимума функции одной переменной и функции многих переменных. Разработка программного обеспечения вычисления локального минимума функции Химмельблау методом покоординатного спуска. Поиск минимума функции методом золотого сечения.
курсовая работа, добавлен 12.10.2009Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.
реферат, добавлен 18.01.2011- 25. Призма
Основные свойства, прямой и наклонный виды призмы. Площадь поверхности призмы и площадь ее боковой поверхности: доказательство теоремы. Сечение призмы плоскостью. Свойства правильной призмы, особенности ее сечения и симметрия. Оси и плоскости симметрии.
презентация, добавлен 20.12.2010