Использование нейронных сетей в системе Matlab
Способы применения нейронных сетей для решения различных математических и логических задач. Принципы архитектуры их построения и цели работы программных комплексов. Основные достоинства и недостатки каждой из них. Пример рекуррентной сети Элмана.
Подобные документы
Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа, добавлен 22.06.2011Теоретические основы сверточных нейронных сетей. Исследование зависимости качества работы сети от изменения различных характеристик. Сравнение результатов работы сетей типа многослойный персептрон в определении пола и возраста человека по фотографии лица.
курсовая работа, добавлен 18.07.2014Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа, добавлен 08.02.2017Изучение методов разработки систем управления на основе аппарата нечеткой логики и нейронных сетей. Емкость с двумя клапанами с целью установки заданного уровня жидкости и построение нескольких типов регуляторов. Проведение сравнительного анализа.
курсовая работа, добавлен 14.03.2009Классификация компьютерных сетей в технологическом аспекте. Устройство и принцип работы локальных и глобальных сетей. Сети с коммутацией каналов, сети операторов связи. Топологии компьютерных сетей: шина, звезда. Их основные преимущества и недостатки.
реферат, добавлен 21.10.2013Рассмотрение способов применения и основных понятий нейронных сетей. Проектирование функциональной структуры автоматизированной системы построения нейросети обратного распространения ошибки, ее классов и интерфейсов. Описание периода "бета тестирования".
дипломная работа, добавлен 02.03.2010Понятие и сущность виртуальных частных сетей (VPN) и история их появления. Принцип работы и общее описание технологии VPN, основы туннелирования. Протоколы управления, их виды и использование. Достоинства, недостатки и перспективы развития сетей VPN.
курсовая работа, добавлен 26.08.2010Понятие о нейронных сетях и параллели из биологии. Базовая искусственная модель, свойства и применение сетей. Классификация, структура и принципы работы, сбор данных для сети. Использование пакета ST Neural Networks для распознавания значимых переменных.
реферат, добавлен 16.02.2015Сущность, структура, алгоритм функционирования самообучающихся карт. Начальная инициализация и обучение карты. Сущность и задачи кластеризации. Создание нейронной сети со слоем Кохонена при помощи встроенной в среды Matlab. Отличия сети Кохонена от SOM.
лабораторная работа, добавлен 05.10.2010- 35. Нейрокибернетика
Достоинства, недостатки и применение нейронных сетей. Преимущества мозга, как вычислительного устройства, над современными вычислительными машинами. Структурные части, виды и активационные функции нейрона. Обобщенное представление искусственного нейрона.
презентация, добавлен 03.01.2014 Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.
курсовая работа, добавлен 17.06.2014Понятие и назначение сетей VPN, принципы их построения, классификация и разновидности, сферы применения. Виды протоколов VPN и особенности их использования. Методы реализации виртуальной частной сети, преимущества и недостатки данной технологии.
реферат, добавлен 04.11.2009История возникновения, примеры использования и основные виды искусственных нейронных сетей. Анализ задач, решаемых при помощи Персептрона Розенблатта, создание схемы имитационной модели в среде Delphi. Исходные коды компьютерной программы Perseptron.
дипломная работа, добавлен 18.12.2011Принципы организации и функционирования биологических нейронных сетей. Система соединенных и взаимодействующих между собой простых процессоров. Нейронные сети Маккалока и Питтса. Оценка качества кластеризации. Обучение многослойного персептрона.
курсовая работа, добавлен 06.12.2010Признаки и отличительные черты интеллектуальных информационных систем, их классификация и использование при разработке экономических и управленческих решений. Определение, назначение и области применения экспертных систем. Использование нейронных сетей.
курс лекций, добавлен 27.04.2009Использование компьютерных сетей для передачи данных. Основные преимущества использования корпоративных сетей, защищенных от доступа извне физически или при помощи аппаратно программных средств сетевой защиты. Сетевой экран и алгоритмы шифрования.
дипломная работа, добавлен 25.09.2014- 42. Логические сети
Применение математических методов для решения логических задач и построения логических схем. Определение и реализация булевых функций. Основные схемы функциональных элементов. Программируемые логические матрицы. Правила составления таблицы истинности.
курсовая работа, добавлен 19.03.2012 Изучение архитектуры искусственных нейронных сетей, способов их графического изображения в виде функциональных и структурных схем и программного представления в виде объектов специального класса network. Неокогнитрон и инвариантное распознавание образов.
курсовая работа, добавлен 12.05.2015Принципы и система распознавание образов. Программное средство и пользовательский интерфейс. Теория нейронных сетей. Тривиальный алгоритм распознавания. Нейронные сети высокого порядка. Подготовка и нормализация данных. Самоорганизующиеся сети Кохонена.
курсовая работа, добавлен 29.04.2009Обзор программных продуктов для анализа изображений: ABBYY FineReader и OCR CuneiForm. Понятие и виды нейронных сетей. Алгоритм обучения персептрона. Результаты исследований и описание интерфейса программы. Расчет себестоимости программного обеспечения.
дипломная работа, добавлен 17.08.2011Психодиагностика и нейронные сети. Математические модели и алгоритмы психодиагностики. Решение нейросетями задач психодиагностики. Интуитивное предсказание нейросетями взаимоотношений. Полутораслойный предиктор с произвольными преобразователями.
диссертация, добавлен 02.10.2008Этапы решения задачи классификации цифр арабского алфавита на основе нейронных сетей: выбор класса, структуры и пакета нейронной сети, ее обучение, требования к информационной и программной совместимости, составу и параметрам технических средств.
реферат, добавлен 19.10.2010Общее понятие файлообменной сети. Основные принципы работы файлообмена, его широкие возможности. Типы организации файлообменных сетей. Функционирование частично децентрализованных (гибридных) сетей. Устройство и особенности одноранговой сети, P2P.
презентация, добавлен 28.11.2012Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа, добавлен 28.12.2015Возможности Matlab, выполнении математических и логических операций, интерактивные инструменты построения графиков. Конструкции для обработки и анализа больших наборов данных, программные и отладочные инструменты, оптимизация данных, операций и функций.
статья, добавлен 01.05.2010