Суммирование расходящихся рядов
Основные понятия теории рядов. Методы суммирования расходящихся рядов. Суть метода степенных рядов, теоремы Абеля и Таубера. Метод средних арифметических, взаимоотношение между методами Пуассона-Абеля и Чезаро. Основные методы обобщенного суммирования.
Подобные документы
Использование признаков Коши и Лейбница для исследования абсолютной и условной сходимости рядов. Применение теории вероятности для изучения закономерности случайных явлений. Основные действия над комплексными числами. Решение задач симплексным методом.
контрольная работа, добавлен 04.02.2012Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение, добавлен 25.12.2010Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат, добавлен 10.08.2010Понятие об основной тенденции ряда динамики, ее сущность и визуальное представление, методы анализа. Аналитическая оценка уравнения тренда. Характеристика, использование различных методов для выделения тренда временных рядов, прогнозирование показателей.
курсовая работа, добавлен 04.03.2013Построение интервальных вариационных рядов по показателям. Вычисление средней арифметической, моды и медианы, относительных и абсолютных показателей вариации. Определение количественных характеристик распределений, построение эмпирической функции.
курсовая работа, добавлен 11.01.2012Главная задача спектрального анализа временных рядов. Параметрические и непараметрические методы спектрального анализа. Сущность понятия "временный ряд". График оценки спектральной плотности для окна Дирихле, при центрированном случайном процессе.
курсовая работа, добавлен 17.09.2009Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.
курсовая работа, добавлен 15.06.2011Вариация признаков в совокупности. Типы рядов распределения: атрибутивные и вариационные. Классификация по характеру вариации. Основные характеристики и графическое изображение вариационного ряда. Показатели центра распределения и колеблемости признака.
курсовая работа, добавлен 23.07.2009Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа, добавлен 09.12.2013Степенные ряды. Радиус сходимости. Ряды Лорана. Полюса и особые точки. Интегрирование дифференциальных уравнений при помощи степенных рядов. Общее дифференциальное уравнение Риккати. Исследование решений в окрестности полюса и существенно особой точки.
дипломная работа, добавлен 15.12.2012- 36. Ряд Фурье
Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.
курсовая работа, добавлен 20.05.2015 Понятие и виды статистических рядов распределения, основные формы их представления. Расчет и анализ показателей, характеризующих центральную тенденцию, вариацию, структуру и форму ряда распределения. Проведение сглаживания эмпирического распределения.
курсовая работа, добавлен 07.06.2011- 38. Сходимость ряда на концах интервала. Дифференциальные уравнения. Задачи на неопределённый интеграл
Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.
контрольная работа, добавлен 24.04.2013 Исторический процесс развития взглядов на существо математики как науки, основные этапы формирования аксиоматического метода. Теории групп, множеств, отображений и конгруэнтности (равенства) отрезков. Основные аксиоматические теоремы и их доказательства.
курсовая работа, добавлен 24.05.2009Закон и свойства нормального распределения случайной величины. На основе критерия согласия Пирсона построение гистограммы, статистической функции и теоретической кривой и определение согласованности теоретического и статистического распределения.
курсовая работа, добавлен 30.10.2013Исследование сходимости рядов. Степенной ряд интеграла дифференциального уравнения. Определение вероятности событий, закона распределения случайной величины, математического ожидания, эмпирической функции распределения, выборочного уравнения регрессии.
контрольная работа, добавлен 04.10.2010Нахождение вероятности того, что наудачу взятое натуральное число не делится. Построение гистограммы для изображения интервальных рядов, расчет средней арифметической дискретного вариационного ряда, среднего квадратического отклонения и дисперсии.
контрольная работа, добавлен 18.05.2009- 43. Числовые ряды
Математическое описание последовательности чисел Фибоначчи. Представление фрагмента корзины "Гармония Мироздания" как образца формирования числовых рядов. Особенности построения живой спирали "Китовраса", ее практическое применение в древнем мире.
доклад, добавлен 16.01.2011 Способы задания, предел и непрерывность функции. Свойства неопределенного интеграла. Понятие числового ряда и свойства сходящихся рядов. Порядок дифференциального уравнения. Случайные события и операции над ними. Классическое определение вероятности.
учебное пособие, добавлен 23.01.2014Построение и графическое изображение вариационных рядов. Дискретный вариационный ряд распределения урожайности зерновых, сельскохозяйственных предприятий по качеству почв. Показатели центра распределения. Показатели формы и колеблемости признака.
лабораторная работа, добавлен 15.05.2014Понятие знакочередующихся рядов. Последовательность частичных сумм четного и нечетного числа членов. Исследование сходимости ряда. Проверка выполнения признака Лейбница. Погрешность при приближенном вычислении суммы сходящегося знакочередующегося ряда.
презентация, добавлен 18.09.2013Прогрессии многочленов и их матриц. Описание вертикальных рядов. Построение алгебраической трапеции из ограниченного количества чисел ряда последовательности. Свободные члены выражений. Особенности разрешимости Диофантовых уравнений. Расшифровка формул.
курсовая работа, добавлен 31.12.2015Рассмотрение особенностей сравнения рядов. Характеристика признаков сходимости Даламбера. Критерий Коши как ряд утверждений в математическом анализе. Анализ геометрической интерпретации интегрального признака. Способы определения сумы числового ряда.
контрольная работа, добавлен 01.03.2013Основное свойство рядов с неотрицательными членами. Необходимое и достаточное условие сходимости. Предельный признак сравнения. Расходящийся гармонический ряд. Ряды с положительными членами; определение конечного предела отношения их общих членов.
презентация, добавлен 18.09.2013Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.
курсовая работа, добавлен 17.07.2014