Матрицы. Дифференциальные уравнения

Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

Подобные документы

  • Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа, добавлен 05.05.2010

  • Полное исследование функции с помощью производных, построение графика функции, нахождение ее наибольшего и наименьшего значения на отрезке. Методика вычисления неопределенных и определенных интегралов. Нахождение общего решения дифференциального уравнения

    контрольная работа, добавлен 26.02.2012

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция, добавлен 14.12.2010

  • Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.

    презентация, добавлен 17.09.2013

  • Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

    курсовая работа, добавлен 04.01.2016

  • Вычисление градиента, дивергенции и ротора однократным дифференцированием функций. Дифференциальные операций и операторы второго порядка. Выполнение условий дифференцируемости и непрерывности. Оператор Лапласа, градиент дивергенции, формулы Грина.

    реферат, добавлен 21.03.2014

  • Определение гипергеометрического ряда, свойства его функции и представление уравнения. Дифференциальное уравнение для вырожденной гипергеометрической функции и его интегралы. Представление различных функций через вырожденные гипергеометрические функции.

    курсовая работа, добавлен 27.11.2010

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга, добавлен 03.10.2011

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция, добавлен 24.11.2010

  • История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат, добавлен 07.09.2009

  • Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.

    лекция, добавлен 17.12.2010

  • Способы определения плоскости. Прямые в пространстве, признаки их параллельности, пересечения, скрещивания. Принадлежность прямой плоскости, их параллельность и скрещивание. Перпендикулярность прямой и плоскости. Взаимодействие плоскостей в пространстве.

    презентация, добавлен 13.04.2016

  • Общий интеграл дифференциального уравнения, приводящегося к однородному. Решение задачи Коши методами интегрирующего множителя и способом Бернулли. Построение интегральной кривой методом изоклин. Составление матрицы системы и применение теоремы Крамера.

    курсовая работа, добавлен 23.12.2010

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа, добавлен 13.04.2016

  • Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.

    реферат, добавлен 24.08.2015

  • Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.

    курсовая работа, добавлен 29.01.2010

  • Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.

    курсовая работа, добавлен 12.02.2013

  • Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.

    контрольная работа, добавлен 27.04.2011

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация, добавлен 21.09.2013

  • Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.

    курсовая работа, добавлен 21.10.2013

  • История возникновения уравнений, понятие их решения и виды упрощения. Анализ способов решения ряда занимательных задач с помощью уравнений. Обращение Аль-Хорезми с уравнениями как с рычажными весами. Параметры и переменные, область определения и корень.

    реферат, добавлен 01.03.2012

  • Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.

    статья, добавлен 21.05.2009

  • Применение классического определения вероятности в решении экономических задач. Определение вероятности попадания на сборку бракованных и небракованных деталей. Вычисление вероятности и выборочного значения статистики при помощи формулы Бернулли.

    контрольная работа, добавлен 18.09.2010

  • Итерационные методы (методы последовательных приближений) для решения уравнений. Одношаговые итерационные формулы. Метод последовательных приближений Пикара. Возникновение хаоса в детерминированных системах. Методы решения систем алгебраических уравнений.

    контрольная работа, добавлен 04.09.2010

  • Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.

    курсовая работа, добавлен 26.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.