Сплайны, финитные функции
Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.
Подобные документы
Ознакомление с понятием и основными свойствами кривых постоянной ширины. Треугольник Рело: исторические сведения, очертание, площадь. Особенности движения его вершины и центра. Применение исследуемой фигуры в грейферном механизме и кинопроекторах.
курсовая работа, добавлен 18.01.2011Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.
курсовая работа, добавлен 23.07.2011- 53. Функционалы
Фундаментальные понятия теории квадратичных форм. Линейные, квадратичные и билинейные функционалы. Приведение квадратичной формы к каноническому виду. Классификация комплексных квадратичных функционалов. Определенные вещественные квадратичные функционалы.
контрольная работа, добавлен 24.08.2015 Основные правила преобразования графиков на примерах элементарных функций: преобразование симметрии, параллельный перенос, сжатие и растяжение. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций.
презентация, добавлен 16.11.2010История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.
реферат, добавлен 07.09.2009Понятие функции как важнейшее понятие математики, ее общие свойства. Особенности обратной функции, ее экстремумы. Наибольшее и наименьшее значение функции, ее периодичность, четность и нечетность. Нуль функции, промежутки знакопостоянства, монотонность.
презентация, добавлен 18.12.2014Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат, добавлен 12.06.2010Исследование видов квадратичных форм и способов приведения квадратичных форм к каноническому виду. Сфера применения и особенности данного вида уравнений: определения и доказательство основных теорем, алгоритм решения ряда задач по данной тематике.
контрольная работа, добавлен 29.03.2012Понятие и основные свойства обратной функции. Нахождение функции, обратной данной. Область определения функции. Обратимость монотонной функции. Построение графиков функций и определение их свойств. Симметричность графиков функций относительно прямой у=х.
презентация, добавлен 18.01.2015Понятие функции нескольких переменных. Аргументы, частное значение и область применения функции. Рассмотрение функции двух и трех переменных. Предел функции нескольких переменных, теорема. Главная сущность непрерывности функции нескольких переменных.
реферат, добавлен 30.10.2010Основные способы приведения квадратичных форм к каноническому виду. Выделение полных квадратов по стандартной схеме метода Лагранжа. Запись матрицы перехода. Линейное и невырожденное преобразование координат. Метод ортогональных преобразований.
лекция, добавлен 05.09.2013Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.
презентация, добавлен 18.04.2013Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.
презентация, добавлен 17.09.2013Алгоритм вычисления преобразования Фурье для дискретного случая. Дискретное преобразование Фурье. Спектральное представление и спектральные характеристики периодического сигнала, четной непериодической функции и произвольного непериодического сигнала.
курсовая работа, добавлен 23.01.2022Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.
контрольная работа, добавлен 30.03.2015Понятие и оценка необходимости в статистической обработке психологических данных. Методика и основные этапы математической обработки полученных данных, его критерии и параметры: признаки и переменные, шкалы измерения, анализ и оценка уровня значимости.
презентация, добавлен 28.02.2014Понятие о статистическом графике, его элементы. Незаменимость графических изображений благодаря их выразительности, доходчивости, лаконичности и универсальности. Классификация видов графиков. Виды диаграмм – структурные, динамичные. Статистические карты.
учебное пособие, добавлен 09.02.2009- 68. Функции
Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.
реферат, добавлен 22.06.2019 - 69. Плоскости
Понятие плоскостей, их классификация и разновидности, способы и принципы задания. Сущность и этапы решения позиционных задач. Исследование принадлежности прямой заданной плоскости, методика и цели доказательства их параллельности и перпендикулярности.
презентация, добавлен 27.10.2013 Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.
презентация, добавлен 29.10.2015Понятие функции в древнем мире: Египет, Вавилон, Греция. Графическое изображение зависимостей, история возникновения. Вклад в развитие графиков функций Рене Декартом. Определение функций: понятие и способы задания. Методы построения графиков функций.
реферат, добавлен 09.05.2009Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.
курсовая работа, добавлен 19.09.2011Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.
методичка, добавлен 24.08.2009Понятие предела функции и основные требования, предъявляемые к нему, геометрический смысл. Методика определения данной геометрической категории в заданной точке при различных условиях. Вычисление ординат графиков. Возрастание по абсолютной величине.
презентация, добавлен 21.09.2013Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.
презентация, добавлен 21.09.2013