Метод найменших квадратів
Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
Подобные документы
Історія становлення поняття дійсного числа. Властивості ланцюгових дробів загального виду з додатними елементами. Зображення дійсних чисел ланцюговими дробами загального виду і системними дробами. Задачі, при розв’язанні яких використовуються ці дроби.
курсовая работа, добавлен 02.03.2014Загальні формули прямокутників. Похибка методу прямокутників. Площа криволінійної трапеції. Формула парабол (Сімпсона). Інтерполяційний багаточлен Лагранжа. Формула трьох восьмих. Абсолютна похибка обчислення. Наближення підінтегральної функції.
лабораторная работа, добавлен 26.03.2011Поняття приватного інтеграла. Побудова квадратичних двовимірних стаціонарних систем із приватним інтегралом у вигляді параболи, окружності або гіперболи. Умови існування в системи двох часток інтегралів. Якісне дослідження побудованих класів систем.
дипломная работа, добавлен 14.01.2011Перевірка гіпотези про нормальний розподіл параметрів загального аналізу крові для компенсованого, субкомпенсованого та декомпенсованого станів за кишкової непрохідності. Перевірки гіпотез про рівність середніх значень та про незалежність параметрів.
курсовая работа, добавлен 13.08.2010Загальні типи правильних опуклих многогранників. Властивості тетраедрів, кубів, октаедрів, додекаедрів та ікосаедрів. Кількість сторін, ребер та вершин многогранника. Формули для визначення площі поверхні многогранників. Винаходження декартових координат.
презентация, добавлен 12.12.2011Основні правила нанесення розмірів. Рекомендації з виконання креслень. Проведення паралельних і перпендикулярних ліній. Розподіл відрізка прямої на рівні частини. Побудова і розподіл кутів. Пошук центра окружності чи дуги і визначення їхніх радіусів.
практическая работа, добавлен 03.03.2016Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.
контрольная работа, добавлен 06.08.2010Виведення рівняння коливань струни. Постановка початкових і кінцевих умов. Розв’язання задачі про коливання нескінченної і напівнескінченної струни. Метод та фізичний зміст формули Даламбера. Розповсюдження хвиль відхилення. Метод Фур'є, стоячі хвилі.
курсовая работа, добавлен 04.04.2011Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа, добавлен 12.09.2009- 35. Симплекс-метод
Сутність симплекс-методу у вирішенні задач лінійного програмування. Рішення задачі на відшукання максимуму або мінімуму лінійної функції за умови, що її змінні приймають невід'ємні значення і задовольняють деякій системі лінійних рівнянь або нерівностей.
реферат, добавлен 26.02.2012 Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.
контрольная работа, добавлен 18.11.2013Системи лінійних алгебраїчних рівнянь, головні означення. Коротка характеристика головних особливостей матричного способу, методу Жордано-Гаусса. Формули Крамера, теорема Кронекера-Капеллі. Практичний приклад розв’язання однорідної системи рівнянь.
курсовая работа, добавлен 25.04.2013Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.
презентация, добавлен 06.02.2014Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.
курсовая работа, добавлен 10.04.2011- 40. Метод хорд
Опис одного з поширених ітераційних методів, методу хорда — ітераційного методу знаходження кореня рівняння, який ще має назви метод лінійного інтерполювання, метод пропорційних частин, або метод хибного положення. Задачі для самостійного розв’язування.
реферат, добавлен 04.12.2010 Аналіз математичних моделей технологічних параметрів та методів математичного моделювання. Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання. Суть нечіткого методу групового врахування аргументів.
курсовая работа, добавлен 18.07.2010Історія створення і різні формулювання теореми Піфагора як актуальної математичної задачі, спроби докази теореми. Визначення теореми Фалеса про пропорційні відрізки, її рішення. Місце теореми Вієта та формули Герона в сучасному шкільному курсі геометрії.
курсовая работа, добавлен 25.05.2019Класифікація методів для задачі Коші. Лінійні багатокрокові методи. Походження формул Адамса. Різницевий вигляд методу Адамса. Метод Рунге-Кутта четвертого порядку. Підвищення точності обчислень методу за рахунок подвійного обчислення значення функції.
презентация, добавлен 06.02.2014Поняття відносини залежності, розгляд відносин залежності на різних множинах. Теорема довільних та транзитивних просторів залежності. Зв'язок транзитивних відносин залежності з операторами замикання. Поняття простору залежності, транзитивності, матроїда.
курсовая работа, добавлен 20.01.2011Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.
курсовая работа, добавлен 26.12.2010Теорія приведення загального рішення кривих і поверхонь другого порядку до канонічного виду в системі побудови графіків. Основні поняття (лінійний оператор, власний вектор і власне значення матриці, характеристичне рівняння, квадратична форма) і теореми.
курсовая работа, добавлен 13.11.2012Вивчення існування періодичних рішень диференціальних систем і рівнянь за допомогою властивостей симетричності (парність, непарність). Основні теорії вектор-функцій, що відбивають. Побудова множини систем, парна частина загального рішення яких постійна.
курсовая работа, добавлен 20.01.2011Нове уточнення поняття алгоритму вітчизняним математиком Марковим: 7 уточнених ним параметрів. Побудова алгоритмів з алгоритмів. Універсальний набір дій по управлінню обчислювальним процесом. Нормальні алгоритми Маркова. Правило розміщення результату.
реферат, добавлен 30.03.2009Великий математик П’єр Ферма. Історія виникнення теореми Ферма-Ойлера. Способи її доведення Лагранжем та Д. Цагиром. Інволютивність перетворення трійки натуральних чисел. Єдиність та кількість представлення простого числа у вигляді суми двох квадратів.
курсовая работа, добавлен 08.05.2014Обчислення довжини дуги для просторової кривої, що задана параметрично. Варіант розрахунку у випадку задання кривої в полярній системі координат. Формули для обчислення площі поверхні обертання. Вираз площі циліндричної поверхні через елементарні функції.
научная работа, добавлен 12.05.2010