Параллельная реализация логических нейронных сетей
Модели нейронных сетей и их реализации. Последовательный и параллельный методы резолюции как средства логического вывода. Зависимость между логическим следованием и логическим выводом. Применение технологии CUDA и реализация параллельного алгоритма.
Подобные документы
Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.
дипломная работа, добавлен 07.06.2012История развития, применение искусственных нейронных сетей. Распознавание образов в сети. Сжатие данных и ассоциативная память. Проектирование экспертной системы, позволяющей диагностировать заболевания органов пищеварения. Программная реализация системы.
курсовая работа, добавлен 05.02.2016Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа, добавлен 08.02.2017Понятие сетей и связи их компонентов. Характеристики и структура сетей. Основные модели, описывающие поведение сетей. Проектирование и реализация взвешенных сетей: требования к интерфейсу, выбор среды разработки, структура приложения. Анализ результатов.
курсовая работа, добавлен 29.06.2012Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.
контрольная работа, добавлен 11.01.2016Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.
курсовая работа, добавлен 05.05.2015Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.
презентация, добавлен 14.08.2013Алгоритм декомпозиции графов и расчеты динамики логических сетей. Преобразование пространства булевых векторов. Описание блоков программной реализации и их взаимодействие. Разработка программы "слияния" статистик на основе алгоритма объединения.
дипломная работа, добавлен 07.03.2012Понятие и особенности организации технологии CUDA, принципы реализации алгоритма с его помощью. Генерация случайных чисел. Оценка производительности исследуемой технологии, специфика построения графических программ на основе, преимущества использования.
контрольная работа, добавлен 25.12.2014Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.
реферат, добавлен 25.04.2016Параллельные вычислительные системы, их общая характеристика и функциональные особенности, оценка возможностей, внутренняя структура и взаимосвязь элементов, типы: одно- и многопроцессорные. Параллельная форма алгоритма, его представление и реализация.
контрольная работа, добавлен 02.06.2014Понятие сетей Петри, их применение и возможности. Сетевое планирование, математические модели с использованием сетей Петри. Применение сетевых моделей для описания параллельных процессов. Моделирование процесса обучения с помощью вложенных сетей Петри.
курсовая работа, добавлен 17.11.2009Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.
реферат, добавлен 05.12.2010Эволюция систем безопасности сетей. Межсетевые экраны как один из основных способов защиты сетей, реализация механизмов контроля доступа из внешней сети к внутренней путем фильтрации всего входящего и исходящего трафика. Управление безопасностью сетей.
курсовая работа, добавлен 07.12.2012Теоретические основы сверточных нейронных сетей. Исследование зависимости качества работы сети от изменения различных характеристик. Сравнение результатов работы сетей типа многослойный персептрон в определении пола и возраста человека по фотографии лица.
курсовая работа, добавлен 18.07.2014Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.
дипломная работа, добавлен 21.10.2013Понятие и назначение сетей VPN, принципы их построения, классификация и разновидности, сферы применения. Виды протоколов VPN и особенности их использования. Методы реализации виртуальной частной сети, преимущества и недостатки данной технологии.
реферат, добавлен 04.11.2009Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа, добавлен 28.12.2015Применение методов искусственного интеллекта при определении цвета глаз будущего ребенка. Сущность нейросетевых технологий, обучение нейросимуляторов. Зависимость погрешности обучения от погрешности обобщения. Оценка значимости входных параметров.
презентация, добавлен 14.08.2013- 45. Нейрокибернетика
Достоинства, недостатки и применение нейронных сетей. Преимущества мозга, как вычислительного устройства, над современными вычислительными машинами. Структурные части, виды и активационные функции нейрона. Обобщенное представление искусственного нейрона.
презентация, добавлен 03.01.2014 Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.
курсовая работа, добавлен 06.06.2012Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.
курсовая работа, добавлен 03.03.2015Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.
дипломная работа, добавлен 06.04.2014Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.
курсовая работа, добавлен 17.06.2014Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.
курсовая работа, добавлен 11.04.2012