Параллельная реализация логических нейронных сетей

Модели нейронных сетей и их реализации. Последовательный и параллельный методы резолюции как средства логического вывода. Зависимость между логическим следованием и логическим выводом. Применение технологии CUDA и реализация параллельного алгоритма.

Подобные документы

  • Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.

    дипломная работа, добавлен 07.06.2012

  • История развития, применение искусственных нейронных сетей. Распознавание образов в сети. Сжатие данных и ассоциативная память. Проектирование экспертной системы, позволяющей диагностировать заболевания органов пищеварения. Программная реализация системы.

    курсовая работа, добавлен 05.02.2016

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа, добавлен 08.02.2017

  • Понятие сетей и связи их компонентов. Характеристики и структура сетей. Основные модели, описывающие поведение сетей. Проектирование и реализация взвешенных сетей: требования к интерфейсу, выбор среды разработки, структура приложения. Анализ результатов.

    курсовая работа, добавлен 29.06.2012

  • Алгоритмы кластеризации данных, отбора факторов, построения множественной линейной регрессии, оценки параметров процесса на скользящем постоянном интервале. Решение задач анализа данных на нейронных сетях и результаты моделирования нелинейных функций.

    контрольная работа, добавлен 11.01.2016

  • Обучение простейшей и многослойной искусственной нейронной сети. Метод обучения перцептрона по принципу градиентного спуска по поверхности ошибки. Реализация в программном продукте NeuroPro 0.25. Использование алгоритма обратного распространения ошибки.

    курсовая работа, добавлен 05.05.2015

  • Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.

    презентация, добавлен 14.08.2013

  • Алгоритм декомпозиции графов и расчеты динамики логических сетей. Преобразование пространства булевых векторов. Описание блоков программной реализации и их взаимодействие. Разработка программы "слияния" статистик на основе алгоритма объединения.

    дипломная работа, добавлен 07.03.2012

  • Понятие и особенности организации технологии CUDA, принципы реализации алгоритма с его помощью. Генерация случайных чисел. Оценка производительности исследуемой технологии, специфика построения графических программ на основе, преимущества использования.

    контрольная работа, добавлен 25.12.2014

  • Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.

    реферат, добавлен 25.04.2016

  • Параллельные вычислительные системы, их общая характеристика и функциональные особенности, оценка возможностей, внутренняя структура и взаимосвязь элементов, типы: одно- и многопроцессорные. Параллельная форма алгоритма, его представление и реализация.

    контрольная работа, добавлен 02.06.2014

  • Понятие сетей Петри, их применение и возможности. Сетевое планирование, математические модели с использованием сетей Петри. Применение сетевых моделей для описания параллельных процессов. Моделирование процесса обучения с помощью вложенных сетей Петри.

    курсовая работа, добавлен 17.11.2009

  • Разработка систем автоматического управления. Свойства нейронных сетей. Сравнительные оценки традиционных ЭВМ и нейрокомпьютеров. Формальная модель искусственного нейрона. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.

    реферат, добавлен 05.12.2010

  • Эволюция систем безопасности сетей. Межсетевые экраны как один из основных способов защиты сетей, реализация механизмов контроля доступа из внешней сети к внутренней путем фильтрации всего входящего и исходящего трафика. Управление безопасностью сетей.

    курсовая работа, добавлен 07.12.2012

  • Теоретические основы сверточных нейронных сетей. Исследование зависимости качества работы сети от изменения различных характеристик. Сравнение результатов работы сетей типа многослойный персептрон в определении пола и возраста человека по фотографии лица.

    курсовая работа, добавлен 18.07.2014

  • Модели оценки кредитоспособности физических лиц в российских банках. Нейронные сети как метод решения задачи классификации. Описание возможностей программы STATISTICA 8 Neural Networks. Общая характеристика основных этапов нейросетевого моделирования.

    дипломная работа, добавлен 21.10.2013

  • Понятие и назначение сетей VPN, принципы их построения, классификация и разновидности, сферы применения. Виды протоколов VPN и особенности их использования. Методы реализации виртуальной частной сети, преимущества и недостатки данной технологии.

    реферат, добавлен 04.11.2009

  • Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.

    дипломная работа, добавлен 28.12.2015

  • Применение методов искусственного интеллекта при определении цвета глаз будущего ребенка. Сущность нейросетевых технологий, обучение нейросимуляторов. Зависимость погрешности обучения от погрешности обобщения. Оценка значимости входных параметров.

    презентация, добавлен 14.08.2013

  • Достоинства, недостатки и применение нейронных сетей. Преимущества мозга, как вычислительного устройства, над современными вычислительными машинами. Структурные части, виды и активационные функции нейрона. Обобщенное представление искусственного нейрона.

    презентация, добавлен 03.01.2014

  • Изучение сути искусственных нейронных сетей. Векторные пространства. Матрицы и линейные преобразования векторов. Биологический нейрон и его кибернетическая модель. Теорема об обучении персептрона. Линейная разделимость и персептронная представляемость.

    курсовая работа, добавлен 06.06.2012

  • Математические модели, построенные по принципу организации и функционирования биологических нейронных сетей, их программные или аппаратные реализации. Разработка нейронной сети типа "многослойный персептрон" для прогнозирования выбора токарного станка.

    курсовая работа, добавлен 03.03.2015

  • Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа, добавлен 06.04.2014

  • Нейрокомпьютеры и их применение в современном обществе. Некоторые характеризующие нейрокомпьютеры свойства. Задачи, решаемые с помощью нейрокомпьютеров. Типы искусственных нейронов. Классификация искусственных нейронных сетей, их достоинства и недостатки.

    курсовая работа, добавлен 17.06.2014

  • Анализ существующих алгоритмов распознавания режимов работы газотурбинного двигателя. Метод группового учета аргументов, метод Байеса. Применение технологий системного моделирования на этапе проектирования интеллектуальной системы распознавания режимов.

    курсовая работа, добавлен 11.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.