Кластерный анализ и метод горной кластеризации
Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.
Подобные документы
Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.
курсовая работа, добавлен 24.11.2010Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.
реферат, добавлен 27.03.2012Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
контрольная работа, добавлен 07.06.2011Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.
контрольная работа, добавлен 06.04.2012Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.
реферат, добавлен 23.10.2014Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.
курсовая работа, добавлен 12.05.2009Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.
курсовая работа, добавлен 13.04.2011Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.
курсовая работа, добавлен 01.10.2009Поиск корней нелинейных САУ с помощью метода продолжения решения по параметру. Математическое описание метода. Программное обеспечение для построения графиков сходимости метода. Требования к программному обеспечению и описание логической структуры.
курсовая работа, добавлен 27.04.2011Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.
курсовая работа, добавлен 30.04.2011Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.
курсовая работа, добавлен 27.04.2011Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.
контрольная работа, добавлен 26.12.2012Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.
дипломная работа, добавлен 09.06.2019Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.
курсовая работа, добавлен 30.09.2012- 15. Метод хорд
Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.
презентация, добавлен 17.01.2011 Методы планирования многофакторных экспериментов и преимущества их использования. Математическое планирование эксперимента и его основные направления. Пример применения метода дробного факторного эксперимента. Расчет коэффициентов уравнения регрессии.
курсовая работа, добавлен 13.05.2014Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.
курсовая работа, добавлен 20.12.2002Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат, добавлен 19.08.2015Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.
курсовая работа, добавлен 27.03.2011Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа, добавлен 26.04.2014Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.
курсовая работа, добавлен 26.02.2011- 23. Метод Милна
Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.
контрольная работа, добавлен 27.02.2013 Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.
курсовая работа, добавлен 12.05.2009Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.
реферат, добавлен 18.01.2011