Интегрирование дифференциальных уравнений I порядка методом изоклин
История возникновения дифференциальных исчислений. Изучение особенностей дифференциального уравнения I порядка. Описание соотношения, связывающего функцию и ее производные. Рассмотрение метода изоклин. Построение интегральных кривых методом изоклин.
Подобные документы
Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.
реферат, добавлен 06.08.2013Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа, добавлен 09.02.2012Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат, добавлен 24.08.2015Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа, добавлен 23.07.2012Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа, добавлен 16.12.2015Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.
контрольная работа, добавлен 16.03.2010Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция, добавлен 18.08.2012Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа, добавлен 24.11.2013Проведение численного моделирования системы, описанной системой дифференциальных уравнений первого порядка. Схемы моделирования методом последовательного (непосредственного) интегрирования, вспомогательной переменной и методом канонической формы.
контрольная работа, добавлен 12.12.2013Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Представления фазовых кривых систем двух обыкновенных дифференциальных уравнений вблизи критического направления. Построение примеров, удовлетворяющих методу Фроммера. Нахождение характеристических чисел 1 и 2 рода дифференциального уравнения в C++.
дипломная работа, добавлен 11.02.2012Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа, добавлен 13.11.2011Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.
контрольная работа, добавлен 27.04.2011Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа, добавлен 08.01.2016Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа, добавлен 01.03.2012Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.
презентация, добавлен 17.09.2013Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа, добавлен 12.06.2010Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа, добавлен 10.06.2010Общая постановка задачи решения обыкновенных дифференциальных уравнений, особенности использования метода Адамса в данном процессе. Решение системы обыкновенных дифференциальных уравнений методом Адамса и точным методом, сравнение полученных результатов.
курсовая работа, добавлен 27.04.2011Построение таблицы и графика решения линейного дифференциального уравнения. Зависимость погрешности решения от выбора шага интегрирования. Метод Адамса-Башфорта и его применение. Основные функции и переменные, использованные в реализованной программе.
контрольная работа, добавлен 13.06.2012Математическое объяснение метода Эйлера, исправленный и модифицированный методы. Блок-схемы алгоритмов, описание, текст и результаты работы программы. Решение обыкновенных дифференциальных (нелинейных) уравнений первого порядка с начальными данными.
курсовая работа, добавлен 12.06.2010Уравнение с разделяющимися переменными. Однородные и линейные дифференциальные уравнения. Геометрические свойства интегральных кривых. Полный дифференциал функции двух переменных. Определение интеграла методами Бернулли и вариации произвольной постоянной.
реферат, добавлен 24.08.2015Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015Построение фазовой траектории, соответствующей затухающему колебательному переходному процессу, фазового портрета методом изоклин. Вынужденные колебания на выходе нелинейного элемента, гармоническая линеаризация. Структурная схема импульсной системы.
контрольная работа, добавлен 03.12.2011