Решение нелинейных уравнений методом деления отрезка пополам
Вычисление корня функции нелинейного уравнения методом деления отрезка пополам. Способы ввода, вывода и организации данных. Модульная организация программы. Разработка блок-схемы алгоритма задачи. Порядок создания программы на алгоритмическом языке.
Подобные документы
Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа, добавлен 29.06.2012Понятие и структура, принципы и этапы решения линейных уравнений. Уточнение корней методами половинного деления, хорд и Нютона. Пакет MathCad, использование программных фрагментов. Описание документа MathCAD, его стриктура и основные принципы работы.
курсовая работа, добавлен 18.07.2014Биография Исаака Ньютона, его основные исследования и достижения. Описание порядка нахождения корня уравнения в рукописи "Об анализе уравнениями бесконечных рядов". Методы касательных, линейной аппроксимации и половинного деления, условие сходимости.
реферат, добавлен 29.05.2009Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача, добавлен 29.05.2012Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа, добавлен 02.06.2011Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.
контрольная работа, добавлен 22.04.2014Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа, добавлен 26.01.2015Изучение некоторых методов построения отрезков, равных произведению или отношению двух других отрезков, с помощью циркуля и линейки. Использование произвольно выбранного единичного отрезка, а также определение произведения и деления этих отрезков.
творческая работа, добавлен 04.09.2010Формирование системы их пяти уравнений по заданным параметрам, ее решение методом Гаусса с выбором главного элемента. Интерполяционный многочлен Ньютона. Численное интегрирование. Решение нелинейных уравнений. Метод Рунге-Кутта четвертого порядка.
контрольная работа, добавлен 27.05.2013Решение системы уравнений методом Гаусса и с помощью встроенной функции; матричным методом и с помощью вычислительного блока Given/Find. Нахождение производных. Исследование функции и построение её графика. Критические точки и интервалы монотонности.
контрольная работа, добавлен 16.12.2013Решение системы методом Гаусса. Составление расширенной матрицу системы. Вычисление производной сложной функции, определенного и неопределенного интегралов. Область определения функции. Приведение системы линейных уравнений к треугольному виду.
контрольная работа, добавлен 27.04.2014Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа, добавлен 07.09.2010Способы решения системы уравнений с двумя переменными. Прямая как график линейного уравнения. Использование способов подстановки и сложения при решении систем линейных уравнений с двумя переменными. Решение системы линейных уравнений методом Гаусса.
реферат, добавлен 10.11.2009Изучение численных методов приближенного решения нелинейных систем уравнений. Составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке Фортран - IV. Приобретение практических навыков отладки и решения задач с помощью ЭВМ.
методичка, добавлен 27.11.2009Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.
курсовая работа, добавлен 04.05.2014Матричный метод решения систем линейных алгебраических уравнений с ненулевым определителем. Примеры вычисления определителя матрицы. Блок-схема программы, описание объектов. Графический интерфейс, представляющий собой стандартный набор компонентов Delphi.
курсовая работа, добавлен 29.06.2014Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.
курсовая работа, добавлен 14.04.2009Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.
курсовая работа, добавлен 25.11.2011Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа, добавлен 05.07.2015Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.
курсовая работа, добавлен 07.09.2012- 46. Математическое моделирование в задачах расчета и проектирования систем автоматического управления
Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.
курсовая работа, добавлен 13.07.2010 Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.
контрольная работа, добавлен 16.02.2012Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.
курсовая работа, добавлен 17.06.2014- 49. Численные методы
Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.
курсовая работа, добавлен 15.02.2010 Решение систем линейных алгебраических уравнений методом исключения Гаусса. Табулирование и аппроксимация функций. Численное решение обыкновенных дифференциальных уравнений. Приближенное вычисление определенных интегралов. Решение оптимизационных задач.
курсовая работа, добавлен 21.11.2013