Главные и естественные граничные условия. Условия на разрывы
Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.
Подобные документы
Задача о ханойской башне. Задача о разрезании пиццы. Задача Иосифа Флавия. Дискретная математика. Теория возвратных последовательностей - особая глава математики. Исчисление конечных разностей. Последовательности.
дипломная работа, добавлен 08.08.2007Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа, добавлен 27.05.2015Линейная производственная задача. Двойственная задача. Задача о "Расшивке узких мест производства". Транспортная задача. Распределение капитальных вложений. Динамическая задача управления запасами. Анализ доходности и риска.
курсовая работа, добавлен 29.05.2006Понятие "задача" и процесс ее решения. Технология обучения приемам восприятия и осмысления, поиска и составления плана решения. Методика обучения решению задач различными методами. Сущность, смысл и обозначение дробей, практические способы их сравнения.
методичка, добавлен 03.04.2011Применение метода дополнительного аргумента к решению характеристической системы. Доказательство существования решения задачи Коши. Постановка задачи численного расчёта. Дискретизация исходной задачи и её решение итерациями. Программа и её описание.
дипломная работа, добавлен 25.05.2014Физические задачи, приводящие к уравнению теплопроводности. Краевые задачи, связанные с конфигурацией тела и условиями теплообмена. Теория разностных методов решения уравнения теплопроводности, устойчивость и сходимость соответствующих разностных схем.
дипломная работа, добавлен 04.05.2011Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа, добавлен 29.04.2013Методика и основные этапы построения треугольника по двум сторонам и медиане, проведенной к одной из них. Математическое и графическое изображение решения данного задания. Исследование условий для решения задачи и определение условия ее нерешаемости.
презентация, добавлен 11.01.2011Сущность методов сведения краевой задачи к задаче Коши и алгоритмы их реализации на ПЭВМ. Применение метода стрельбы (пристрелки) для линейной краевой задачи, определение погрешности вычислений. Решение уравнения сшивания для нелинейной краевой задачи.
методичка, добавлен 02.03.2010Понятие и свойства отражающей функции. Первый интеграл дифференциальной системы и условия существования. Условия возмущения дифференциальных систем, не изменяющие временных симметрий. Определение связи между первым интегралом и эквивалентными системами.
курсовая работа, добавлен 21.08.2009Общая постановка задачи динамического программирования как метода оптимизации, приспособленного к операциям, в которых процесс принятия решения может быть разбит на этапы (шаги). Принцип оптимальности и уравнения Беллмана. Задача распределения ресурсов.
реферат, добавлен 30.01.2014Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.
контрольная работа, добавлен 24.10.2010Теоретические основы, значение, особенности и методика применения различных способов решения нестандартных задач в развитии математического мышления младших школьников. Логические задачи как средство развития математического мышления младших школьников.
курсовая работа, добавлен 19.04.2010Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.
реферат, добавлен 29.06.2015- 41. Линейные функции
Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.
контрольная работа, добавлен 07.09.2010 Уравнение прямой, проходящей через данную точку перпендикулярно заданному нормальному вектору. Условия параллельности и перпендикулярности двух прямых. Условия пересечения, параллельности или совпадения двух прямых, заданных общими уравнениями.
презентация, добавлен 19.12.2022- 43. Теория игр
Игры, повторяемые многократно, их отличительные свойства и этапы. Смешанные стратегии, условия и возможности их использования на практике. Аналитический метод решения игры типа 2 x 2. Основные теоремы для прямоугольных игр. Алгебраические решения.
презентация, добавлен 23.10.2013 - 44. Сходимость рядов
Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.
контрольная работа, добавлен 07.09.2010 - 45. Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств
Обоснование выбора оптимального маршрута по критерию минимума времени на его прохождение. Словесная постановка маршрутной задачи. Математическая постановка задачи. Оптимизация маршрута с города Рязановский до города Королева. Оценка его вариантов выбора.
курсовая работа, добавлен 19.12.2009 Решение линейной краевой задачи методом конечных разностей (методом сеток). Замена области непрерывного изменения аргументов дискретным множеством узлов (сеток). Сведение линейной краевой задачи к системе линейных алгебраических уравнений (сеточных).
лекция, добавлен 28.06.2009Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа, добавлен 23.05.2013Графический и симплексный методы решения ОЗЛП. Построение функции цели, образующая совместно с системой ограничений математическую модель экономической задачи. Нахождение неотрицательного решения системы линейных уравнений. Решение транспортной задачи.
лабораторная работа, добавлен 10.04.2009Основная идея метода конечных элементов. Пространство конечных элементов. Простейший пример пространства. Однородные граничные условия и функции. Построение базисов в пространствах. Свойства базисных функций. Коэффициенты системы Ритца–Галеркина.
лекция, добавлен 30.10.2013Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.
реферат, добавлен 24.08.2015