Аксонометрия

Понятие аксонометрии как способа изображения предметов на чертеже при помощи параллельных проекций (проекция предмета на плоскости). Наглядность аксонометрических чертежей. Изометрия, диметрия и триметрия. Прямоугольное и косоугольное проецирование.

Подобные документы

  • Вычисление определителя с использованием правила треугольника и метода разложения по элементам ряда. Решение системы уравнений тремя способами: методом Гаусса, методом Кремера и матричным методом. Составление уравнения прямой и плоскости по формуле.

    контрольная работа, добавлен 16.02.2015

  • Основные положения теории инверсии. Определение инверсии-симметрии относительно окружности. Неподвижные точки и окружность инверсии. Образы прямых и окружностей при обобщенной инверсии. Свойства обобщенной инверсии.

    дипломная работа, добавлен 08.08.2007

  • Определение связи между полярными и прямоугольными координатами. Рассмотрение уравнений прямой, окружности, эллипса, гиперболы и параболы в полярных координатах. Представление в исследуемой системе координат спирали Архимеда. Построение графиков функций.

    курсовая работа, добавлен 10.02.2012

  • Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.

    контрольная работа, добавлен 12.11.2012

  • Варианты выбора геометрической фигуры для заполнения плоскости "без просветов". Задача царицы Дидоны. Геометрия воскового кружева пчелиных сот. Модель пчелиной соты. Использование математических принципов "пчелиной" технологии в различных областях.

    реферат, добавлен 06.12.2013

  • Краткая историческая сводка о системе координат. Криволинейные, полярные и сферические системы координат. Рене Декарт - французский философ, физик и математик. Декартова прямоугольная система координат (на плоскости и в трёхмерном пространстве).

    презентация, добавлен 29.06.2010

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка, добавлен 24.08.2009

  • Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.

    курс лекций, добавлен 21.04.2009

  • Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.

    презентация, добавлен 21.09.2013

  • Векторы на плоскости и в пространстве. Расстояние между началом и концом. Коллинеарные и нулевые векторы. Условие коллинеарности и перпендикулярности векторов. Определение суммы и разницы векторов. Свойства операций сложения и умножения вектора на число.

    презентация, добавлен 21.09.2013

  • Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.

    курсовая работа, добавлен 05.12.2012

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике, добавлен 15.11.2014

  • Теоретические основы аналитической геометрии, линейной алгебры и задач оптимизации. Общая характеристика плоскости и основных поверхностей второго порядка. Особенности решения систем линейных уравнений с использованием меню "Мастер функций" MS Excel.

    методичка, добавлен 05.07.2010

  • Решение системы линейных алгебраических уравнений по формулам Крамер. Возведение комплексного числа в натуральную степень. Исследование функции на возрастание и убывание. Нахождение ординаты в экстремальной точке. Задача на вычисление длины дуги кривой.

    контрольная работа, добавлен 13.12.2012

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа, добавлен 20.04.2016

  • Моменты и центры масс плоских кривых. Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности.

    лекция, добавлен 04.09.2003

  • Ознакомление с формулами длины окружности, площади круга (частью плоскости, ограниченной окружностью) и исходящими из них формулами расчета радиуса, диаметра. Получение навыков применения формул, закрепление полученных знаний в ходе выполнения упражнений.

    конспект урока, добавлен 17.05.2010

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие, добавлен 09.03.2009

  • Линия - общая часть двух смежных областей поверхности. Характеристика спиралей – плоских кривых линий. Кардиоида как плоская линия, описываемая фиксированной точкой окружности. Описание циклоида и астроида. Синусоидальная спираль как семейство кривых.

    контрольная работа, добавлен 17.11.2010

  • Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.

    презентация, добавлен 17.09.2013

  • Теоремы Паскаля, Брианшона для пятиугольника, четырехугольника, треугольника. Их использование для решения задач конструктивного типа проективной геометрии линий 2-го порядка на расширенной прямой, связанные с построением точек и касательных к ним.

    курсовая работа, добавлен 02.06.2013

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа, добавлен 13.02.2010

  • Общее и каноническое уравнение прямой, декартова прямоугольная система. Перпендикулярность вектора к прямой и параметрические уравнения. Угловой коэффициент и наклон прямой к оси. Тангенс угла наклона и представление отрезка, отсекаемого линией.

    лекция, добавлен 17.12.2011

  • Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.

    контрольная работа, добавлен 21.02.2010

  • Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.

    контрольная работа, добавлен 07.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.