Численное интегрирование методом Гаусса
Выбор математической модели задачи. Применение численного интегрирования и его методы: прямоугольников, парабол, увеличения точности, Гаусса и Гаусса-Кронрода. Суть математического метода аппроксимации. Интерполяционные методы нахождения значений функции.
Подобные документы
Структура математической модели линейной задачи, алгоритм симплекс-метода. Разработка программы: выбор языка программирования, входные и выходные данные, пользовательский интерфейс. Описание программы по листингу, тестирование, инструкция по применению.
курсовая работа, добавлен 31.05.2013Рассмотрение двух способов решения систем линейных алгебраических уравнений: точечные и приближенные. Использование при программировании метода Гаусса с выбором главного элемента в матрице и принципа Зейделя. Применение простой итерации решения уравнения.
курсовая работа, добавлен 05.06.2012Присвоение значений параметров передаточных функций разомкнутой и замкнутой САР в виде полиномов и типовых динамических звеньев разомкнутой системы. Разработка математической модели электротехнической системы в символьном и символьно-цифровом виде.
практическая работа, добавлен 05.12.2009Компьютерное моделирование - вид технологии. Анализ электрических процессов в цепях второго порядка с внешним воздействием с применением системы компьютерного моделирования. Численные методы аппроксимации и интерполяции и их реализация в Mathcad и Matlab.
курсовая работа, добавлен 21.12.2013Понятие проектирования цифрового фильтра, методы выбора его подходящей структуры с учетом конечной точности вычислений. Решение задачи аппроксимации и преобразование системной функции. Оценка эффектов квантования. Проверка фильтра методами моделирования.
презентация, добавлен 19.08.2013Требования к аппаратным ресурсам персонального компьютера. Расчет цены и прибыли на программное средство. Процедура нахождения значения интеграла методом Симпсона, трапеции, прямоугольников. Формы для ввода и вывода данных с доступным интерфейсом.
дипломная работа, добавлен 11.06.2012Оценка погрешности и точности в математике. Составление программы и алгоритма для численного дифференцирования с заданной допустимой погрешностью на алгоритмическом языке Turbo Pascal 7.0. Составление алгоритма и программы аппроксимации функции.
курсовая работа, добавлен 24.03.2012Выбор наиболее эффективного метода поиска экстремума для функции. Оценка погрешности определения точки минимума. Проверка унимодальности уравнения аналитическим методом и по графику. Сравнение алгоритмов по количеству обращений к функции и по точности.
контрольная работа, добавлен 14.08.2019Построение аппроксимирующей зависимости методом наименьших квадратов. Расчет интеграла по Ричардсону. Последовательность действий при аппроксимации экспоненциальной зависимостью. Определение корня уравнения методом простых итераций и решение задачи Коши.
курсовая работа, добавлен 13.03.2013Решение системы линейных алгебраических уравнений методом Гаусса с выборкой ведущего элемента. Изучение особенности программной реализации алгоритма, составленной средствами разработки Microsoft Visual Studio. Проведение сложения и умножения двух матриц.
курсовая работа, добавлен 22.03.2015Рассмотрение двух методов нахождения приближенного корня дифференциального уравнения, применение их на практике. Графическая интерпретация метода Эйлера. Решение задачи усовершенствованным методом Эйлера. Программная реализация, блок-схемы и алгоритм.
курсовая работа, добавлен 17.06.2013Разработка блока распараллеливания последовательной программы с языка Fortran на язык Fortran-DVM/OpenMP. Реализация блока DVM/OpenMP-эксперт на основе компонента DVM-эксперт. Тестирование системы алгоритмами Якоби, верхней релаксации и методом Гаусса.
дипломная работа, добавлен 15.10.2010Решение нелинейных краевых задач. Входные данные и содержание алгоритма Бройдена. Содержание алгоритма Бройдена. Метод исключения Гаусса для решения СЛАУ. Вывод формулы пересчета Бройдена. Разработка программы, исследование результата и примеры ее работы.
курсовая работа, добавлен 01.04.2010Сущность и особенности выполнения метода динамического программирования. Решение математической задачи, принцип оптимальности по затратам, ручной счёт и листинг программы. Применение метода ветвей и границ, его основные преимущества и недостатки.
курсовая работа, добавлен 15.11.2009Особенности решения транспортной задачи распределительным методом и анализ результатов. Построение математической модели, алгоритма. Создание программы для решения транспортной задачи распределительным методом в программной среде Borland Delphi 7.
курсовая работа, добавлен 23.06.2012Разработка алгоритма и программы, обеспечивающей вычисление максимального значения функции на заданном отрезке, первой производной заданной функции. Методика расчёта, алгоритм решения задачи, описание программы. Результаты расчётов и графики функций.
курсовая работа, добавлен 17.05.2011Задачи оптимизации в математике и информатике. Классификация методов оптимизации. Методы с переменной метрикой. Значение функции на заданном интервале. Локальный минимум функции. Методы минимизации функции. Классификация методов многомерной оптимизации.
курсовая работа, добавлен 19.06.2012- 118. Основные этапы разработки программы вычисления определенного интеграла функции по методу Симпсона
Математическое обоснование метода решения задачи: определенный интеграл, квадратурная формула Симпсона (формула парабол). Словесное описание алгоритма и составление его блок-схемы. Выбор языка программирования. Текст программы решения задачи, ее листинг.
курсовая работа, добавлен 09.07.2012 Графическое решение задач. Составление математической модели. Определение максимального значения целевой функции. Решение симплексным методом с искусственным базисом канонической задачи линейного программирования. Проверка оптимальности решения.
контрольная работа, добавлен 05.04.2016Обзор алгоритмов методов решения задач линейного программирования. Разработка алгоритма табличного симплекс-метода. Составление плана производства, при котором будет достигнута максимальная прибыль при продажах. Построение математической модели задачи.
курсовая работа, добавлен 21.11.2013Изучение основных этапов проектирования программных систем, создание прикладной программы, которая выполняет решение систем линейных алгебраических уравнений методом Гаусса. Вычисление определителя и обращение матриц. Листинг разработанной программы.
курсовая работа, добавлен 12.07.2012Решение типовых задач с помощью языка программирования Turbo Pascal и табличного процессора Microsoft Excel 2007. Обратная геодезическая задача, прямая угловая задача, обратная геодезическая засечка, решение системы линейных уравнений методом Гаусса.
курсовая работа, добавлен 11.01.2011Метод оценки максимального правдоподобия. Основные методы вычисления 95% доверительного интервала. Сознание программы-функции на Matlab для исследования точности оценки параметра экспоненциального распределения методом максимального правдоподобия.
курсовая работа, добавлен 18.05.2014Восстановление математической модели задачи нелинейного программирования. Решение уравнений прямых. Метод линеаризации: понятие, особенности применения при решении задач. Нахождение точки максимума заданной функции. Решение задачи графическим методом.
задача, добавлен 01.06.2013Особенности точных и итерационных методов решения нелинейных уравнений. Последовательность процесса нахождения корня уравнения. Разработка программы для проверки решения нелинейных функций с помощью метода дихотомии (половинного деления) и метода хорд.
курсовая работа, добавлен 15.06.2013