Теория графов
Ориентированные и неориентированные графы: общая характеристика, специальные вершины и ребра, полустепени вершин, матрицы смежности, инцидентности, достижимости, связности. Числовые характеристики каждого графа, обход в глубину и в ширину, базис циклов.
Подобные документы
Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.
контрольная работа, добавлен 12.06.2011Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа, добавлен 22.01.2014Вид графов, используемых в теории электрических цепей, химии, вычислительной технике и в информатике. Основные свойства деревьев. Неориентированный граф. Алгоритм построения минимального каркаса. Обоснование алгоритма. Граф с нагруженными ребрами.
реферат, добавлен 11.11.2008Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.
дипломная работа, добавлен 08.08.2007Числовые характеристики выборки. Статистический ряд и функция распределения. Понятие и графическое представление статистической совокупности. Метод наибольшего правдоподобия для нахождения плотности распределения. Применение метода наименьших квадратов.
контрольная работа, добавлен 20.02.2011Основные понятия теории графов. Матричные способы задания графов. Выбор алгоритма Форда–Бэллмана для решения задачи поиска минимальных путей (маршрутов) в любую достижимую вершину нагруженного орграфа. Способы выделения пути с наименьшим числом дуг.
курсовая работа, добавлен 22.01.2016- 107. Случайные величины
Понятие и направления исследования случайных величин в математике, их классификация и типы: дискретные и непрерывные. Их основные числовые характеристики, отличительные признаки и свойства. Законы распределения случайных величин, их содержание и роль.
презентация, добавлен 19.07.2015 Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа, добавлен 26.09.2013Побудування графа та матриці інцидентності. Перетворення графа у зважений за допомогою алгоритму Дейкстри, знаходження довжини найкоротшого шляху між двома вершинами та побудування дійсного шляху. Обхід дерева у прямому та зворотному порядках.
курсовая работа, добавлен 03.07.2014Розв'язання задач з теорії множин та математичної логіки. Визначення основних характеристик графа г (Х,W). Розклад функцій дискретного аргументу в ряди по базисним функціям. Побудова та доведення діаграми Ейлера-Вена. Побудова матриці інцидентності графа.
курсовая работа, добавлен 20.04.2012Рассмотрение некоторых числовых последовательностей, заданных рекуррентно, их свойств и задач с ними связанных. Теория возвратных последовательностей. Свойства последовательности Фибоначчи и ее золотое сечение. Исследование последовательности Каталана.
реферат, добавлен 03.05.2015Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.
презентация, добавлен 21.09.2013Теоретические основы юридической статистики, числовые характеристики. Построение гистограммы выборки. Оценка среднего значения, дисперсии и эксцесса. Выборочное уравнение регрессии по данным корреляционных таблиц. Интервальная оценка распределения.
курсовая работа, добавлен 16.11.2013Таблица значений выборки дискретных случайных величин в упорядоченном виде. Таблица интервального статистического ряда относительных частот. Задание эмпирической функции распределений и построение ее графика. Полигон и распределение случайной величины.
практическая работа, добавлен 26.07.2012Алгоритм, использующий метод Магу-Вейссмана. Общие сведения, описание, вызов и загрузка, функциональное назначение и программный код программы. Описание логической структуры и инструкция пользователю, решение контрольных примеров раскраски графа.
курсовая работа, добавлен 20.12.2009Тетраедр і паралелепіпед як приклади багатогранників. Багатокутники, з яких складений багатогранник, сторони граней - ребра, кінці ребер - вершини багатогранника. Діагоналі багатогранника та їх властивості. Призми, їх види, характеристики та визначення.
презентация, добавлен 16.02.2011Определение числовых характеристик производной случайной функции. Расчет корреляционной функции и дисперсии спектральной плотности. Группировка заданной выборки, построение выборочной функции распределения и гистограммы, доверительного интервала.
контрольная работа, добавлен 02.06.2010- 118. Элементарные события
Пространство элементарных событий, совместные и несовместные события, поиск их вероятности. Функция распределения системы случайных величин. Числовые характеристики системы: математическое ожидание и дисперсия. Оценка закона генеральной совокупности.
задача, добавлен 15.06.2012 Классическая формула для вероятности события, отношение благоприятного числа исходов опыта к общему числу всех равновозможных несовместных исходов. Понятие непрерывной и дискретной случайной величины, их числовые характеристики и законы распределения.
презентация, добавлен 19.07.2015Аппроксимация функции y = f(x) линейной функцией y = a1 + a2x. Логарифмирование заданных значений. Расчет коэффициентов корреляции и детерминированности. Построение графика зависимости и линии тренда. Числовые характеристики коэффициентов уравнения.
курсовая работа, добавлен 10.01.2015- 121. Свойства икосаэдра
Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.
презентация, добавлен 19.02.2017 Классическое, статистическое и геометрическое определения вероятности. Дискретные случайные величины и законы их распределения. Числовые характеристики системы случайных величин. Законы равномерного и нормального распределения систем случайных величин.
дипломная работа, добавлен 25.02.2011Понятие случайной величины, а также ее основные числовые характеристики. Случайная величина, подчиняющаяся нормальному закону распределения. Кривые плотности вероятности. Использование генератора случайных чисел. Изображение векторов в виде графика.
лабораторная работа, добавлен 27.05.2015Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
курсовая работа, добавлен 14.10.2010Понятие комплекса случайных величин, закона их распределения и вероятностной зависимости. Числовые характеристики случайных величин: математическое ожидание, момент, дисперсия и корреляционный момент. Показатель интенсивности связи между переменными.
курсовая работа, добавлен 07.02.2011