Интегральное и дифференциальное исчисление. Приложения интегралов, ряд Фурье
Рассмотрение задач с двойными и тройными интегралами, применение к ним геометрического и симплекс методов решения; описание теоретической и практической части. Разложение функции в ряд Фурье по синусам и определение наибольшего и наименьшего значения.
Подобные документы
Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.
курсовая работа, добавлен 16.05.2010Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.
автореферат, добавлен 29.05.2010Определение основных свойств выпуклых фигур. Описание традиционного решения изопериметрической задачи. Приведение примеров задач на поиск точек экстремума. Формулирование и доказательство теоремы о пятиугольнике наибольшего периметра единичного диаметра.
дипломная работа, добавлен 30.03.2011Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.
курсовая работа, добавлен 12.07.2012Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа, добавлен 16.01.2013Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа, добавлен 27.11.2012Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат, добавлен 05.09.2010Понятие интеграла. Приложения двойных интегралов к задачам механики: масса плоской пластинки переменной плотности; статические моменты и центр тяжести пластинки; моменты инерции пластинки. Вычисление площадей и объёмов с помощью двойных интегралов.
реферат, добавлен 16.06.2014- 84. Численное решение обратных задач по восстановлению граничных условий уравнения параболического типа
Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.
диссертация, добавлен 19.06.2015 Представления линейных дифференциальных уравнений как средств математического решения практических задач в естествознании. Простейшая модель однородных популяций на примере определения роста численности карасей. Отлов с постоянной и относительной квотой.
курсовая работа, добавлен 11.07.2011Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа, добавлен 16.08.2010Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа, добавлен 08.04.2015Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа, добавлен 16.12.2008Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.
контрольная работа, добавлен 28.03.2014Рассмотрение основных методов решения школьных задач на движение двух тел в разных и одинаковых направлениях: анализ и синтез, сведение к ранее решенным, математическое моделирование (знаковые, графические модели), индукция, исчерпывающая проба.
презентация, добавлен 08.05.2010Дифференциальное уравнение Бесселя и его интегралы. Рекуррентные формулы для данных функций. Применение теоремы Коши к интегралу Пуассона. Некоторые применения функций Бесселя. Задача на тепловое равновесие. Дифференциальное уравнение второго порядка.
курсовая работа, добавлен 06.06.2013Неполные дифференциальные уравнения и их приложения, необходимость их применения в различных областях науки. Понятия и определения, типы и методы решения. Переходная кривая железнодорожного пути. Движение пули внутри вещества. Погружение тел в воду.
курсовая работа, добавлен 29.10.2011- 93. Теория множеств
Определение понятия множества как совокупности некоторых объектов, объединенных по какому-либо признаку. Классификация операций над множествами. Принципы взаимно однозначного соответствия. Нахождение наибольшего общего делителя и наименьшего кратного.
презентация, добавлен 24.09.2011 Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.
методичка, добавлен 24.08.2009Решение задачи об оптимальном направлении капиталовложений в строительную отрасль и оптимизации поставки грузов. Применение симплекс-метода для оптимальной организации ремонтно-строительных работ. Изучение методов динамического программирования.
контрольная работа, добавлен 08.01.2011Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.
курсовая работа, добавлен 25.11.2010Построение квадратичной двумерной стационарной системы, нахождение состояний равновесия, исследование бесконечно-удаленной части плоскости. Необходимые и достаточные условия существования у системы двух частных интегралов. Построение траектории в круге.
дипломная работа, добавлен 07.09.2009Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа, добавлен 25.02.2009Область сходимости степенного ряда. Нахождение пределов, вычисление определенных интегралов. Применение степенных рядов в приближенных значениях. Изучение особенностей решения дифференциальных уравнений. Достаточное условие разложимости функции в ряд.
курсовая работа, добавлен 21.05.2019Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа, добавлен 17.12.2013