Призмы
Определение призмы как геометрической фигуры. Свойства призмы, нормальное сечение. Правильная призма – призма, в основании которой лежит правильный многоугольник, а боковые рёбра перпендикулярны основаниям. Диагональное сечение. Элементы призм и ее виды.
Подобные документы
Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.
курсовая работа, добавлен 28.06.2009Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.
презентация, добавлен 19.01.2014Определение центра тяжести сечения. Вычисление, при каком значении момента Х угол поворота правого концевого сечения вала равно нулю, построение эпюры крутящих моментов. Расчет значений осевых и центробежных моментов инерции, построение схемы сечения.
контрольная работа, добавлен 06.08.2010Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.
учебное пособие, добавлен 06.11.2011- 55. Пчелиные соты
Варианты выбора геометрической фигуры для заполнения плоскости "без просветов". Задача царицы Дидоны. Геометрия воскового кружева пчелиных сот. Модель пчелиной соты. Использование математических принципов "пчелиной" технологии в различных областях.
реферат, добавлен 06.12.2013 Аксиомы: точки и прямые. Отрезки и их длины. Углы и их меры. Смежные и вертикальные углы. Параллельные прямые: определение, свойства. Треугольник и его элементы, признаки равенства. Треугольник и его виды: равнобедренный, равносторонний, прямоугольный.
презентация, добавлен 20.05.2009Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.
дипломная работа, добавлен 24.02.2010- 58. Типы изображений
Вид как изобpажение обpащенной к наблюдателю видимой части повеpхности пpедмета, его разновидности: местный и дополнительный. Понятие и типы сечений, правила их обозначения. Pазpез: сущность и классификация. Порядок и этапы выполнения сложных разрезов.
презентация, добавлен 27.11.2013 Интеграл Риммана как одно из понятий математического анализа. Примеры решения определенного интеграла. Площадь криволинейного сектора в полярных координатах. Вычисление объема тела по площадям параллельных сечений, плоскостью перпендикулярной оси ОХ.
контрольная работа, добавлен 13.12.2011Свойства и характеристика интегралов с бесконечными пределами, признаки их сходимости. Расчет несобственных интегралов с бесконечными пределами. Определение несобственного интеграла от разрывной функции с аналитической и геометрической точки зрения.
реферат, добавлен 23.08.2009Эволюция взглядов и подходов к процессу родов до 1900 года и на современном этапе. Преимущества и недостатки применения обезболивающих средств, степень их опасности для матери и ребенка. Кесарево сечение: плюсы и минусы. Ответственность женщины.
реферат, добавлен 28.11.2010- 62. Числа Фибоначи
Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.
презентация, добавлен 15.06.2017 - 63. Графическое отображение объектов и процессов при их проектировании в промышленности и строительстве
Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.
методичка, добавлен 03.02.2013 Треугольник как геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки. Основные элементы данной фигуры: вершины и стороны. Классификация и разновидности треугольников по различным признакам.
презентация, добавлен 28.11.2013- 65. Круги Эйлера
Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).
презентация, добавлен 16.02.2015 - 66. Обычные дроби
Первая дробь, с которой познакомились люди в Египте. Числитель и знаменатель дроби. Правильная и неправильная дробь. Смешанное число. Приведение к общему знаменателю. Неполное частное. Целая и дробная часть. Обратные дроби. Умножение и деление дробей.
презентация, добавлен 11.10.2011 Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.
учебное пособие, добавлен 07.01.2012- 68. Числовые ряды
Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.
лекция, добавлен 27.05.2010 Основные свойства геологических объектов как пространственных переменных. Виды математических моделей геологических объектов. Вариограмма и ее аппроксимации. Вероятностные модели геологических полей. Влияние на вариограмму геометрической базы измерений.
презентация, добавлен 17.07.2014Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.
презентация, добавлен 30.10.2014Исследование понятия "форма" в биологии и векторной геометрии. Математическая модель формообразования и пути познания энергетических процессов в геометрии. Деление отрезка в золотом сечении. Уравнение экспансии как векторная основа формообразования.
реферат, добавлен 20.08.2009Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".
статья, добавлен 18.04.2012Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа, добавлен 10.06.2014Определение вероятности попадания в мишень по формуле Бернулли. Закон и многоугольник распределения случайной величины. Построение функции распределения, графика. Математическое ожидание, дисперсия, среднее квадратическое отклонение случайной величины.
контрольная работа, добавлен 26.02.2012Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа, добавлен 09.08.2015