Движение

Понятие движения как преобразования одной фигуры в другую при сохранении расстояния между точками. Характеристика видов движения (центральная и осевая симметрия, поворот и параллельный перенос). Переход фигуры в равную ей фигуру, сохранение углов.

Подобные документы

  • Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.

    контрольная работа, добавлен 27.05.2004

  • Понятие о геометрическом преобразовании. Роль движений в геометрии. Применение аффинных преобразований при решении задач. Свойства аффинного преобразования. Транзитивность, рефлексивность и симметричность. Свойство перспективно-аффинного соответствия.

    курсовая работа, добавлен 08.05.2011

  • Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.

    презентация, добавлен 20.11.2014

  • Четыре основные задачи, решаемые методами преобразования. Сущность способа замены плоскостей проекций. Решение ряда задач по преобразованию прямой общего положения в прямую уровня, а затем - в проецирующую, выполнив последовательно два преобразования.

    реферат, добавлен 17.10.2010

  • Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.

    практическая работа, добавлен 15.12.2013

  • Особенности применения теорем Пифагора и косинусов в делении углов на равновеликие части. Порядок нахождения углов в геометрических фигурах с помощью биссектрис. Методика деления угла на три равные части с использованием способа угла больше развернутого.

    статья, добавлен 28.02.2010

  • Тождества, используемые для системы Жигалкина. Многочлен Жигалкина функции одной, двух и трех переменных. Содержание теоремы. Практический пример преобразования многочлена с помощью метода цепочки и неопределенных коэффициентов. Закон полного поглощения.

    контрольная работа, добавлен 06.08.2013

  • Идея и возможности вейвлет-преобразования. Свойства вейвлетов: непрерывное прямое и обратное образование. Понятие и оценка преимуществ, сферы применения дискретного вейвлет-преобразования. Поиск изображений по образцу. Многомасштабное редактирование.

    курсовая работа, добавлен 27.04.2011

  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья, добавлен 22.06.2008

  • Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.

    курсовая работа, добавлен 15.06.2010

  • Нахождение длины ребер, углов между ними, площадей граней и объема пирамиды по координатам вершин пирамиды. Решение системы трех линейных уравнений с тремя неизвестными методом Крамера, средствами матричного исчисления. Уравнение кривой второго порядка.

    контрольная работа, добавлен 01.05.2012

  • Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.

    курсовая работа, добавлен 26.09.2009

  • Основы формальной логики Аристотеля. Понятия инверсии, конъюнкции и дизъюнкции. Основные законы алгебры логики. Основные законы, позволяющие производить тождественные преобразования логических выражений. Равносильные преобразования логических формул.

    презентация, добавлен 23.12.2012

  • Понятие и технологии проецирования, особенности применения компьютерных технологий в данном процессе, его типы и признаки. Свойства параллельного проецирования. Комплексный чертеж точки (эпюр Г. Монжа). Взаимное расположение точек, его принципы.

    контрольная работа, добавлен 22.11.2013

  • Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.

    презентация, добавлен 23.09.2013

  • Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.

    курсовая работа, добавлен 10.10.2011

  • Общее понятие и признаки гиперболы. Асимптоты гиперболы как прямые, проходящие через начало координат и имеющие угловые коэффициенты. Общее понятие и формула эксцентриситета как отношения фокусного расстояния к длине действительной оси гиперболы.

    презентация, добавлен 21.09.2013

  • Теоретические основы моделирования: понятие модели и моделирования. Моделирование в решении текстовых задач. Задачи на встречное движение двух тел. Задачи на движение двух тел в одном направлении и в противоположных направлениях. Графические изображения.

    курсовая работа, добавлен 03.07.2008

  • Сведения о плоских кривых. Замечательные кривые третьего порядка. Классификация Ньютона кривых третьего порядка. Циссоида и ее свойства. Преобразования плоскости, переводящие кривые второго порядка в кривые третьего порядка. Преобразования Маклорена.

    дипломная работа, добавлен 22.04.2011

  • Преобразования Фурье, представление периодической функции суммой отдельных гармонических составляющих. Использование преобразований как для непрерывных функций времени, так и для дискретных. Программа и примеры реализации алгоритмов с прореживанием.

    реферат, добавлен 25.05.2010

  • Изучение понятия и видов призм. Основные параметры прямой призмы, у которой все основания являются правильными многоугольниками. Понятие и свойства параллелепипеда – призмы, основанием которого является параллелограмм. Соотношения между элементами призмы.

    реферат, добавлен 09.11.2010

  • Особенности нормальной формы линейного преобразования. Изучение собственных и присоединенных векторов линейного преобразования. Выделение подпространства, в котором преобразование А имеет только одно собственное значение. Анализ инвариантных множителей.

    курсовая работа, добавлен 21.02.2010

  • Свойства дискретного преобразования Фурье, представленные в виде математических формул, которые наиболее адекватно соответствуют цифровой технике обработки информации. Алгоритм быстрого преобразования Фурье (БПФ), его значение для программирования.

    учебное пособие, добавлен 11.02.2014

  • Элементарные многоэкстремальные функции, направления их исследования и вычисление основных параметров. Сравнительный анализ ЭМЭФ-преобразования и преобразования Фурье. Механизм и значение обнаружения слабого сигнала на фоне сильной низкочастотной помехи.

    статья, добавлен 03.07.2014

  • Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.

    курсовая работа, добавлен 28.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.