Численное решение системы линейных алгебраических уравнений методом Гаусса
Применение итерационных методов численного решения системы линейных алгебраических уравнений при вычислении на ЭВМ. Математические и алгоритмические основы решения задачи, метод Гаусса. Функциональные модели и блок-схемы, программная реализация решения.
Подобные документы
Решение системы линейных уравнений методами деления отрезка пополам, Гаусса и подбора параметров. Формализация задач при моделировании; построение математических, алгоритмических и программных моделей задач с помощью электронных таблиц Microsoft Excel.
лабораторная работа, добавлен 21.07.2012Решение системы дифференциальных уравнений, заданной в нормальной форме Коши. Определение аналитических зависимостей изменения переменных состояния системы с использованием преобразования Лапласа. Численный метод решения системы c помощью Mathcad.
практическая работа, добавлен 05.12.2009Характеристика влияния компьютера на здоровье человека. Определение корней уравнения в Microsoft Excel с точностью до шестого знака после запятой. Решение системы линейных уравнений методом вычисления определителей и матричным способом в Microsoft Excel.
контрольная работа, добавлен 19.03.2012Математическое моделирование электрической схемы, ее расчет и оптимизация. Расчет сопротивления элементов и ветвей. Решение системы уравнений методом Халецкого. Метод многомерной оптимизации – метод покоординатного спуска. Система линейных уравнений.
курсовая работа, добавлен 17.12.2011Методика разработки и механизм отладки программы на языке Лисп, реализующей криптографический алгоритм кодирования информации с открытым ключом – RSA. Математические и алгоритмические основы решения задачи, его программная модель, составление блок-схемы.
курсовая работа, добавлен 20.01.2010Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа, добавлен 15.06.2013Основные этапы математического моделирования. Метод Эйлера как наиболее простой численный метод решения обыкновенных дифференциальных уравнений. Написание компьютерной программы, которая позволит изучать графики системы дифференциальных уравнений.
курсовая работа, добавлен 05.01.2013Описание математической модели. Обоснование метода реализации. Вид алгоритма и программы. Руководство системного программиста, оператора. Комбинирование метод хорд и касательных. Интерпретация и анализ результатов. Листинг программы, контрольный пример.
курсовая работа, добавлен 12.01.2014Математический алгоритм вычисления корней нелинейного уравнения и его решение методом касательных. Особенности программной реализации решения таких уравнений. Процедура подготовки и решения задачи на ЭВМ, характеристика алгоритма и структуры программы.
курсовая работа, добавлен 02.06.2012Решение линейных дифференциальных уравнений численными и символьными методами в рамках пакета компьютерной математики MathCAD. Сравнения результов решений и применение их при исследовании функционирования автоматических систем и электрических агрегатов.
контрольная работа, добавлен 07.05.2009Обзор методов решения в Excel. Рекурентные формулы метода Эйлера. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. Метод Эйлера с шагом h/2. Решение дифференциальных уравнений с помощью Mathcad. Модифицированный метод Эйлера.
курсовая работа, добавлен 18.01.2011Понятие графика функции и его представление на ЭВМ. Алгоритм реализации, блок-схема и функциональные тесты графического метода решения частного случая задачи нелинейного программирования, его математическая модель. Диалог программы с пользователем.
курсовая работа, добавлен 15.05.2012Критерий эффективности и функции в системе ограничений. Общая постановка задачи линейного программирования. Составление математической модели задачи. Алгоритмы решения задачи симплексным методом. Построение начального опорного решения методом Гаусса.
курсовая работа, добавлен 01.06.2009Решение нелинейных уравнений методом простых итераций и аналитическим, простым и модифицированным методом Ньютона. Программы на языке программирования Паскаль и С для вычислений по вариантам в порядке указанных методов. Изменение параметров задачи.
лабораторная работа, добавлен 24.06.2008Реализация решения обыкновенных дифференциальных уравнений 1-го и 2-го порядка методом Рунге-Кутты. Построение на ЭВМ системы отображения результатов в табличной форме и в виде графика. Архитектура и требования к разрабатываемым программным средствам.
курсовая работа, добавлен 05.11.2011Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений: Эйлера, Рунге-Кутта, Адамса и Рунге. Техники приближенного решения данных уравнений: метод конечных разностей, разностной прогонки, коллокаций; анализ результатов.
курсовая работа, добавлен 14.01.2014Решение нелинейных краевых задач. Входные данные и содержание алгоритма Бройдена. Содержание алгоритма Бройдена. Метод исключения Гаусса для решения СЛАУ. Вывод формулы пересчета Бройдена. Разработка программы, исследование результата и примеры ее работы.
курсовая работа, добавлен 01.04.2010Определение недостатков итерационного численного способа нахождения корня заданной функции (метод Ньютона). Рассмотрение основ математического и алгоритмического решения поставленной задачи, ее функциональной модели, блок-схемы и программной реализации.
курсовая работа, добавлен 25.01.2010Построение и использование математических и алгоритмических моделей для решения линейных оптимизационных задач. Освоение основных приемов работы с инструментом "Поиск решения" среды Microsoft Excel. Ввод системы ограничений и условий оптимизации.
лабораторная работа, добавлен 21.07.2012Принципы составления простейших логических программ на примере баз знаний "Родственные отношения". Составление ориентированного графа без циклов, решения алгебраических уравнений с легко воспринимаемой внутренней логикой. Алгоритмы и листинги программ.
лабораторная работа, добавлен 24.01.2014Анализ предметной области объектно-ориентированного программирования. Языки Delphi, Object Pascal - объектно-ориентированная среда программирования. Основные алгоритмические решения. Решение дифференциального уравнения методом Рунге-Кутта в среде Excel.
курсовая работа, добавлен 02.04.2011Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта 4-го порядка. Команды, используемые при решении обыкновенных дифференциальных уравнений в системе вычислений. Результат работы программы.
курсовая работа, добавлен 05.04.2013Составление программы на алгоритмическом языке Turbo Pascal. Разработка блок-схемы алгоритма её решения. Составление исходной Pascal-программы и реализация вычислений по составленной программе. Применение методов Рунге-Кутта и Рунге-Кутта-Мерсона.
курсовая работа, добавлен 17.09.2009Разработка проекта по вычислению корней нелинейных уравнений методом итераций, в среде программирования Delphi. Интерфейс программы и ее программный код, визуализация метода. Сравнение результатов решения, полученных в Mathcad 14 и методом итераций.
контрольная работа, добавлен 10.12.2010Суть основных идей и методов, особенностей и областей применения программирования для численных методов и решения нелинейных уравнений. Методы итераций, дихотомии и хорд и их использование. Алгоритм метода Ньютона, создание программы и ее тестирование.
курсовая работа, добавлен 17.02.2010