Математические методы механики сплошных сред. Метод сеток
Метод сеток (конечных разностей) - вид численного анализа. Расчет стержней и пластин на прочность, устойчивость и колебания. Формулы для приближенного вычисления производных от функций переменных, расчет упругих систем и разномерных краевых задач.
Подобные документы
Решение линейной краевой задачи методом конечных разностей. Сопоставление различных вариантов развития процесса с применением анализа графиков, построенных на базе полученных данных. Графическое обобщение нескольких вариантов развития процесса.
лабораторная работа, добавлен 15.11.2010Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
реферат, добавлен 06.03.2011Задачи для обыкновенных дифференциальных уравнений. Квадратурные формулы. Теоретические основы метода сеток для решения задачи Коши. Погрешность аппроксимации, устойчивость, основная теорема метода сеток. Схема предиктор-корректор 2-го порядка.
реферат, добавлен 07.12.2013Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат, добавлен 05.09.2010Соотношения между операторами дифференцирования и конечных разностей. Разностная аппроксимация дифференциальных уравнений. Интерполяционные рекуррентные формулы, метод Эйлера. Интерполяция конечными разностями "назад". Рекуррентные формулы Адамса.
реферат, добавлен 08.08.2009Общая характеристика параболических дифференциальных уравнений на примере уравнения теплопроводности. Основные определения и конечно-разностные схемы. Решение дифференциальных уравнений параболического типа методом сеток или методом конечных разностей.
контрольная работа, добавлен 27.04.2011Формула для начала счета методом прогонки С.К. Годунова. Метод дополнительных краевых условий. Второй вариант метода переноса краевых условий в произвольную точку интервала интегрирования. Метод переноса в произвольную точку интервала интегрирования.
методичка, добавлен 13.07.2010Изучение методики расчета температурных полей, использующей традиционный конечный элемент и введенный коэффициент учета объемности поля. Порядок математического моделирования задачи механики сплошных сред. Преимущества и недостатки численного решения.
курсовая работа, добавлен 28.12.2012Понятие конформного отображения и его основные свойства. Основные принципы конформных отображений функций комплексного переменного, их гидродинамические аналогии и интерпретации. Применение метода конформных отображений в механике сплошных сред.
дипломная работа, добавлен 26.08.2014- 10. Приближенные методы решения краевых задач, для дифференциальных уравнений с частными производными
Использование метода конечных разностей для решения краевой задачи уравнений с частными производными эллиптического типа. Графическое определение распространения тепла методом конечно-разностных аппроксимаций производных с применением пакета Mathlab.
курсовая работа, добавлен 06.07.2011 Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.
курсовая работа, добавлен 13.04.2011Изучение прямых методов решения вариационных и краевых задач математического анализа. Основные идеи методов Ритца и Галеркина для нахождения приближенного обобщенного решения задачи минимизации функционала. Особенности, сходство и отличие данных методов.
презентация, добавлен 30.10.2013Описание общих принципов метода сеток, его применение к решению параболических уравнений. Исследование разрешимости получаемой системы разностных уравнений. Разработка программы для численного решения поставленной задачи, выполнение тестовых расчетов.
курсовая работа, добавлен 12.10.2009Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций, добавлен 21.04.2009Метод Гаусса - последовательное исключение переменных из системы уравнений. Определение понятия расширенной матрицы. Метод Крамера, расчет определителя системы. Метод обратной матрицы. Расчет алгебраических дополнений для элементов полученной матрицы.
презентация, добавлен 21.09.2013Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция, добавлен 14.12.2010Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.
курсовая работа, добавлен 10.07.2012Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.
лекция, добавлен 02.06.2008Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа, добавлен 18.05.2019Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа, добавлен 29.08.2010Теория малых упругопластических деформаций. Метод последовательных приближений. Метод упругих решений. Подход, основанный на методе дополнительных нагрузок. Теория пластического течения. Упругость объемной деформации. Критерий упрочнения Д. Дракера.
презентация, добавлен 17.07.2015Определение возвратной последовательности. Формулы вычисления любого члена из нее. Характеристическое уравнение для возвратного уравнения. Исчисление конечных разностей. Обобщение произвольных возвратных последовательностей. Базис возвратного уравнения.
курсовая работа, добавлен 07.10.2009- 23. Формула Грина
Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.
курсовая работа, добавлен 11.07.2012 - 24. Численные методы
Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.
курс лекций, добавлен 06.03.2009 Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие, добавлен 08.02.2010