Развитие математики в России в середине XVIII века
Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.
Подобные документы
Поняття та структура інтелекту людини. Процес формування інтелектуальних вмінь і навичок у молодших школярів. Особливості інтелектуального розвитку молодших школярів у процесі навчання математики. Специфіка розв'язання задач підвищеної складності.
курсовая работа, добавлен 20.03.2013Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".
реферат, добавлен 09.11.2010Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат, добавлен 08.02.2013Ознакомление с жизнью и научной деятельностью древнегреческих ученых Фалеса Милетского, Пифагора, Демокрита и Аристотеля. Рассмотрение вклада в развитие математики Аристотеля и Аполлония Пергского. Научные достижения математика Андрея Петровича Киселева.
презентация, добавлен 21.11.2011- 80. Функции
Понятие функции как одно из важнейших понятий математики. Сюръекции, инъекции и биекции. Композиция или сложная функция и ее иллюстрация. Зависимость множеств Х и У, их области, элементы и простейших операций над ними. История математической функции.
реферат, добавлен 11.03.2009 Понятие вероятности, математического ожидания, закона больших чисел, динамика их развития. Введение аксиоматического определения понятия вероятности математического ожидания. Теоремы Бернулли и Пуассона как простейшие формы закона больших чисел.
дипломная работа, добавлен 23.08.2009История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.
научная работа, добавлен 12.05.2010Новые информационно-коммуникационные технологии в современном школьном образовании. Применение программных обеспечений при срезе и контроля знаний по теме "Показательная функция". Роль использования компьютерных технологий в преподавании математики.
курсовая работа, добавлен 05.03.2008Математическое программирование - область математики, в которой изучаются методы решения задач условной оптимизации. Основные понятия и определения в задачах оптимизации. Динамическое программирование – математический метод поиска оптимального управления.
презентация, добавлен 23.06.2013Современные качественные исследования устойчивости. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами. Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики.
реферат, добавлен 19.10.2005Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса по теме: "Применение аппарата математического анализа при решении задач с параметрами".
курсовая работа, добавлен 27.09.2013Высшая математика в профессиональной деятельности военного юриста. Теоретические аспекты применения методов высшей математики в военной юриспруденции, практическое использование методик. Разделы высшей математики, использующиеся в военной юриспруденции.
реферат, добавлен 28.02.2009Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.
реферат, добавлен 26.11.2009Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.
контрольная работа, добавлен 05.03.2011- 90. Комбинаторика
Сущность комбинаторики как области математики, исследующей количество и разновидности комбинаций заданных объектов в определенных условиях. Особенности и понятие комбинаторной задачи. Примеры составления комбинаторных задач и способы их решения.
презентация, добавлен 19.02.2012 Понятие и виды задач математического линейного и нелинейного программирования. Динамическое программирование, решение задачи средствами табличного процессора Excel. Задачи динамического программирования о выборе оптимального распределения инвестиций.
курсовая работа, добавлен 21.05.2010Геометрия как раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Основные этапы становления и развития данной науки, ее современные достижения и перспективы.
презентация, добавлен 21.05.2012Потоки в сетях, структура и принципы формирования алгоритма Форда-Фалкерсона, особенности его реализации программным методом. Минимальные остовные деревья. Алгоритм Борувки: понятие и назначение, сферы и специфика практического использования, реализация.
курсовая работа, добавлен 15.06.2015Интеграл Риммана как одно из понятий математического анализа. Примеры решения определенного интеграла. Площадь криволинейного сектора в полярных координатах. Вычисление объема тела по площадям параллельных сечений, плоскостью перпендикулярной оси ОХ.
контрольная работа, добавлен 13.12.2011Диофант Александрийский - древнегреческий математик и одна из загадок в истории математики. Диофантовы уравнения как математическая модель жизненных ситуаций. Задачи на разложение числа. Китайская теорема об остатках. Десятая проблема Гильберта.
реферат, добавлен 22.06.2014Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.
презентация, добавлен 05.07.2016Оптимизация как раздел математики, ее определение, сущность, цели, формулировка и особенности постановки задач. Общая характеристика различных методов математической оптимизации функции. Листинг программ основных методов решения задач оптимизации функции.
курсовая работа, добавлен 20.01.2010Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.
дипломная работа, добавлен 14.06.2007Теоретические основы, значение, особенности и методика применения различных способов решения нестандартных задач в развитии математического мышления младших школьников. Логические задачи как средство развития математического мышления младших школьников.
курсовая работа, добавлен 19.04.2010Нахождение полинома Жегалкина методом неопределенных коэффициентов. Практическое применение жадного алгоритма. Венгерский метод решения задачи коммивояжера. Применение теории нечетких множеств для решения экономических задач в условиях неопределённости.
курсовая работа, добавлен 16.05.2010