Систематизация применения фрактала в моделировании
Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.
Подобные документы
Перегляд основ математики. Фрактальні властивості в природі. Фрактальна розмірність Хаусдорфа-Безиковича. Канторівский пил, крива Пеано, сніжинка фон Коха, килим Серпінського. Поняття типових фракталів та порівняння їх між собою. Загальна теорія хаосу.
реферат, добавлен 06.04.2011Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".
контрольная работа, добавлен 23.12.2015Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
дипломная работа, добавлен 08.08.2007Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа, добавлен 24.06.2015Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.
курс лекций, добавлен 02.06.2013Понятие, истоки, систематизация и развитие теории групп. Множество как совокупность объектов, рассматриваемых как единое целое. Нильпотентные группы - непустые множества, замкнутые относительно бинарной алгебраической операции, их свойства и признаки.
курсовая работа, добавлен 27.03.2011Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.
курсовая работа, добавлен 27.04.2014Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.
курсовая работа, добавлен 21.08.2013Нормальное распределение на прямой, нормальная кривая. Влияние параметров нормального распределения на форму нормальной кривой. Вероятность отклонения в заданный интервал нормальной случайной величины. Вычисление вероятности заданного отклонения.
курсовая работа, добавлен 06.12.2012Неполные дифференциальные уравнения и их приложения, необходимость их применения в различных областях науки. Понятия и определения, типы и методы решения. Переходная кривая железнодорожного пути. Движение пули внутри вещества. Погружение тел в воду.
курсовая работа, добавлен 29.10.2011Кривая и формы поверхности второго порядка. Анализ свойств кривых и поверхностей второго порядка. Исследование форм поверхности методом сечений плоскостями, построение линии, полученной в сечениях. Построение поверхности в канонической системе координат.
курсовая работа, добавлен 28.06.2009- 12. Предельные точки
Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.
курсовая работа, добавлен 11.01.2011 Сущность теории множеств и особенности ее практического применения. Операции над множествами и их главные закономерности. Порядок нахождения области определения функции, участков ее возрастания и убывания. Определение вероятности исследуемого действия.
контрольная работа, добавлен 02.12.2011- 14. Функции
Множество: понятие, элементы, примеры. Разность двух множеств, их пересечение. Множество действительных, рациональных, иррациональных, целых и натуральных чисел, особенности изображения их на прямой. Общее понятие о взаимно однозначном соответствии.
презентация, добавлен 21.09.2013 Общая терминология и история изобретения логарифма. Характеристики натурального и обычного логарифма, определение дробного числа и мантиссы. Таблицы и свойства натуральных логарифмов. Логарифмическая и экспоненциальная кривая, понятие функции логарифма.
реферат, добавлен 05.12.2011Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.
контрольная работа, добавлен 12.01.2011- 17. Плоские кривые
Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.
дипломная работа, добавлен 24.02.2010 Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.
лекция, добавлен 17.12.2010Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.
реферат, добавлен 14.01.2011Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.
курсовая работа, добавлен 17.05.2011Понятия "интеграл", "интегральная кривая", "общий интеграл". Геометрическая интерпретация динамической системы на фазовой плоскости. Дифференциальное уравнение, соответствующее динамической системе. Разбиение области в фазовой плоскости на траектории.
курсовая работа, добавлен 25.02.2011Типы бинарных отношений. Изображение графов в виде схемы. Цикл в графе, совпадение его начальной и конечной вершины. Понятие достижимости в теории графов, их математические свойства. Частично упорядоченное множество как один из типов бинарного отношения.
контрольная работа, добавлен 04.09.2010Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа, добавлен 29.04.2011Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция, добавлен 25.03.2012Характерные особенности логарифмов, их свойства. Методика определения логарифма числа по основанию a. Основные свойства логарифмической функции. Множество всех действительных чисел R. Анализ функций возрастания и убывания на всей области определения.
презентация, добавлен 06.02.2012