функция
Элементарные функции, их анализ. Линейная функция. Квадратичная функция. Степенная функция. Показательная функция (экспонента). Логарифмическая функция. Тригонометрическая функция: синус, косинус, тангенс, котангенс. Обратная функция: аrcsin x, аrctg x.
Подобные документы
Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.
учебное пособие, добавлен 09.03.2009Понятие пределов функции, нахождение ее точки экстремума, промежутков возрастания и убывания. Определенный, неопределенный и несобственный интервал. Исследование степенного ряда на сходимость на концах интервала. Решение дифференциального уравнения.
контрольная работа, добавлен 01.05.2012Определение числовых характеристик производной случайной функции. Расчет корреляционной функции и дисперсии спектральной плотности. Группировка заданной выборки, построение выборочной функции распределения и гистограммы, доверительного интервала.
контрольная работа, добавлен 02.06.2010Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.
контрольная работа, добавлен 07.02.2015Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.
контрольная работа, добавлен 09.10.2011Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа, добавлен 14.01.2015Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.
контрольная работа, добавлен 20.03.2016Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.
презентация, добавлен 14.11.2014Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.
контрольная работа, добавлен 26.02.2012Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.
курс лекций, добавлен 14.12.2012Сущность конформного отображения 1 и 2 рода, аналитической функции в заданной области. Геометрический смысл аргумента и модуля производной функции. Величина коэффициента растяжения в точке. Сохранение функции отличной от нуля по величине и напряжению.
презентация, добавлен 17.09.2013Область определения функции. Точки пересечения графика функции с осями координат. Экстремумы, промежутки возрастания и убывания. Корни полученного квадратного уравнения. Среднее квадратическое отклонение. Коэффициент вариации, максимальное значение ряда.
контрольная работа, добавлен 08.01.2011- 88. Функции
Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.
реферат, добавлен 22.06.2019 Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.
контрольная работа, добавлен 26.03.2014Общие свойства функций. Правила дифференциального исчисления. Неопределенный и определенный интегралы, методы их вычисления. Функции нескольких переменных, производные и дифференциалы. Классические методы оптимизации. Модель потребительского выбора.
методичка, добавлен 07.01.2011Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.
презентация, добавлен 11.09.2011Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.
контрольная работа, добавлен 20.01.2014Решение стандартных, нестандартных, показательных, логарифмических, повышенного уровня иррациональных уравнений с применением производной и основных свойств функции (области определения, значения, монотонности ограниченности), введения новой переменной.
курсовая работа, добавлен 15.06.2010Определение гипергеометрического ряда, свойства его функции и представление уравнения. Дифференциальное уравнение для вырожденной гипергеометрической функции и его интегралы. Представление различных функций через вырожденные гипергеометрические функции.
курсовая работа, добавлен 27.11.2010Понятие и исследование функции четной, нечетной и симметричной относительной оси. Понятие интервалов знакопостоянства. Выпуклость и вогнутость, точки перегиба. Вертикальные и наклонные асимптоты. Наименьшее и наибольшее значения функции и интеграла.
практическая работа, добавлен 25.03.2011Рассмотрение понятия функции комплексного переменного; определение условий ее однозначности и многозначности. Установление функцией w=f(z) зависимости между точками плоскостей Z и W. Пример нахождения образа прямой при заданном отображении функции.
презентация, добавлен 17.09.2013Пределы функции, ее полное исследование с использованием дифференциального исчисления. Вычисление неопределенных интегралов с использованием методов интегрирования. Определенный и несобственный интегралы. Числовые ряды, их исследование на сходимость.
контрольная работа, добавлен 07.04.2013Основные теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа и их доказательство. Локальные экстремумы функции, исследование ее на выпуклость и вогнутость, понятие точки перегиба. Асимптоты и общая схема построения графика функции.
реферат, добавлен 12.06.2010Понятие функции двух и более переменных, ее предел и непрерывность. Частные производные первого и высших порядков. Определение полного дифференциала. Необходимые и достаточные условия существования экстремума и его нахождение на условном множестве.
реферат, добавлен 03.08.2010- 100. Условный экстремум
Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация, добавлен 17.09.2013